Glycerophospholipids are the most abundant constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans and nagana in cattle. They are essential cellular components that fulfill various important functions beyond their structural role in biological membranes such as in signal transduction, regulation of membrane trafficking or control of cell cycle progression. Our previous studies have established that the glycerol-3-phosphate acyltransferase TbGAT is dispensable for growth, viability, and ester lipid biosynthesis suggesting the existence of another initial acyltransferase(s). This work presents the characterization of the alternative, dihydroxyacetonephosphate acyltransferase TbDAT, which acylates primarily dihydroxyacetonephosphate and prefers palmitoyl-CoA as an acyl-CoA donor. TbDAT restores the viability of a yeast double null mutant that lacks glycerol-3-phosphate and dihydroxyacetonephosphate acyltransferase activities. A conditional null mutant of TbDAT in T. brucei procyclic form was created and characterized. TbDAT was important for survival during stationary phase and synthesis of ether lipids. In contrast, TbDAT was dispensable for normal growth. Our results show that in T. brucei procyclic forms i) TbDAT but not TbGAT is the physiologically relevant initial acyltransferase and ii) ether lipid precursors are primarily made by TbDAT.
Molecular properties of emerging contaminants (ECs) and interfacial compositions of colloidal matter dictate the extent of EC–particulate matter surface interaction.
Glycerophospholipids are the main constituents of the biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. The present work reports the characterization of the alkyl-dihydroxyacetonephosphate synthase TbADS that catalyzes the committed step in ether glycerophospholipid biosynthesis. TbADS localizes to the glycosomal lumen. TbADS complemented a null mutant of Leishmania major lacking alkyl-dihydroxyacetonephosphate synthase activity and restored the formation of normal form of the ether lipid based virulence factor lipophosphoglycan. Despite lacking alkyl-dihydroxyacetonephosphate synthase activity, a null mutant of TbADS in procyclic trypanosomes remained viable and exhibited normal growth. Comprehensive analysis of cellular glycerophospholipids showed that TbADS was involved in the biosynthesis of all ether glycerophospholipid species, primarily found in the PE and PC classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.