Biological invasions are a prominent factor contributing to global biodiversity loss. As a result, managing invasive species is a priority for many conservation scientists and natural resource managers. Invasive species management requires a multidisciplinary approach and there is increasing recognition that physiology can be used to inform conservation efforts because physiological processes underlie an individual's response to its environment. For example, physiological concepts and tools can be used to assess the impacts of invasive animals on their new ecosystems, to predict which animal species are likely to become invasive, to prevent the introduction of nonnative animals, and to control incipient or established invasions. To evaluate whether physiology is integrated within invasion science, the journal Biological Invasions was surveyed for a quantitative literature review. To determine how physiology is used to inform invasion science and which subdisciplines of physiology are particularly relevant to invasive animal management, the broader invasion literature was also reviewed to identify examples where physiology has contributed to studying and managing invasive animals. Only 6 % of articles published in Biological Invasions incorporated physiological knowledge or tools, mostly for the purposes of identifying traits associated with species invasiveness (i.e. prediction). However, the broader literature indicated that successful invasive species research and management can be supported by fundamental and applied physiological research for assessing, predicting, preventing, and controlling invasive animals. Development of new techniques and increased availability of equipment for remote or rapid monitoring of physiology in the field will increase opportunities for integrating physiology within invasion science.
Understanding how individuals are distributed in space and time, as well as how they interact with dynamic environmental conditions, represent fundamental knowledge gaps for many fish species. Using acoustic telemetry tags, we monitored the temperatures and depths used by northern pike (Esox lucius L., 1758) and largemouth bass (Micropterus salmoides (Lacepède, 1802)) in Toronto Harbour (Lake Ontario). Northern pike and largemouth bass had similar thermal experiences throughout the year, except during summer, when northern pike were observed in cooler waters than largemouth bass. Both species used different depths throughout the year, with northern pike occupying deeper depths. Statistical modelling indicated that depth usage was influenced by all variables (season, species, and body size) and interactions between them, whereas thermal preferences were influenced by the main effects and interactions between species:season and species : body size. Both species were observed at temperatures warmer than those in the vicinity of nearby telemetry stations, but as station temperatures exceeded 20 °C, northern pike moved into cooler water, indicating active thermoregulation. These data will be useful for refining our understanding of the spatial ecology of fish and for informing fisheries and habitat management in this and other urban harbours of the Laurentian Great Lakes.
Bioenergetics modeling was used to assess the relative importance of food availability and water temperature in determining walleye (Sander vitreus) growth. Temperature regimes experienced by both female and male adult walleye in three basins of Lake Huron and in Lake Erie were determined by use of surgically implanted temperature loggers and acoustic telemetry. Temperatures experienced by walleye were higher in Lake Erie than in Lake Huron. Walleye from Lake Erie grew at nearly double the rate of walleye from Lake Huron, and mass at age for adult females averaged about 50% greater than that for adult males in both lakes. Food consumption rate for an average adult walleye in Lake Erie was nearly twice as high as that in Lake Huron. Interbasin and interlake variability in temperature regimes accounted for a moderate degree of variability in walleye growth. We concluded that the driver for faster growth in Lake Erie compared with Lake Huron was higher food availability in Lake Erie compared with Lake Huron. The sex difference in temperature regimes explained 15% of the sex difference in Lake Erie walleye growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.