This paper describes a method for creating a topography-based gradient on a metallic surface to help mitigate problems associated with condensate retention. The gradient was designed to promote water droplet migration toward a specified region on the surface which would serve as the primary conduit for drainage using only the roughness of the surface to facilitate the movement of the droplets. In this work, parallel microchannels having a fixed land width but variable spacing were etched into copper substrates to create a surface tension gradient along the surface of the copper. The surfaces were fabricated using a 355 nm Nd:YVO4 laser system and then characterized using spray testing techniques and water droplet (2-10 μL) injection via microsyringe. The distances that individual droplets traveled on the gradient surface were also measured using a goniometer and CCD camera and were found to be between 0.5 and 1.5 mm for surfaces in a horizontal orientation. Droplet movement was spontaneous and did not require the use of chemical coatings. The theoretical design and construction of surface tension gradients were also explored in this work by calculating the minimum gradient needed for droplet movement on a horizontal surface using Wenzel's model of wetting. The results of this study suggest that microstructural patterning could be used to help reduce condensate retention on metallic fins such as those used in heat exchangers in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.