Common and rare variants of the CACNA1C voltage-gated calcium channel gene have been associated with autism and other neurodevelopmental disorders including schizophrenia, bipolar disorder and ADHD. However, little is known about how CACNA1C variants affect cellular processes to alter neurodevelopment. The Timothy syndrome mutation is a rare de novo gain-of-function variant in CACNA1C that causes autism with high penetrance, providing a powerful avenue into investigating the role of CACNA1C variants in neurodevelopmental disorders. Here, we use egl-19, the C. elegans homolog of CACNA1C, to investigate the role of voltage-gated calcium channels in autism. We show that an egl-19(gof) mutation that is equivalent to the Timothy syndrome mutation can alter axon targeting and affect behavior in C. elegans. We find that wildtype egl-19 negatively regulates axon termination. The egl-19(gof) mutation represses axon termination to cause axon targeting defects that lead to the misplacement of electrical synapses and alterations in habituation to light touch. Moreover, genetic interactions indicate that the egl-19(gof) mutation functions with genes that promote selective autophagy to cause defects in axon termination and behavior. These results reveal a novel genetic mechanism whereby a de novo mutation in CACNA1C can drive alterations in circuit formation and behavior.
Somatic polyploidization, an adaptation by which cells increase their DNA content to support growth, is observed in many cell types, including cardiomyocytes. Although polyploidization is believed to be beneficial, progression to a polyploid state is often accompanied by loss of proliferative capacity. Recent work suggests that genetics heavily influence cardiomyocyte ploidy. However, the developmental course by which cardiomyocytes reach their final ploidy state has only been investigated in select backgrounds. Here, we assessed cardiomyocyte number, cell cycle activity, and ploidy dynamics across two divergent mouse strains: C57BL/6J and A/J. Both strains are born and reach adulthood with comparable numbers of cardiomyocytes, however the end composition of ploidy classes and developmental progression to reach the final state differ substantially. We expand on previous findings that identified Tnni3k as a mediator of cardiomyocyte ploidy and uncover a novel role for Runx1 in ploidy dynamics and cardiomyocyte cell division, both in developmental and injury contexts. These data provide novel insight into the developmental path to cardiomyocyte polyploidization and challenge the paradigm that hypertrophy is the only mechanism for growth in the postnatal heart.
Variants of the CACNA1C voltage-gated calcium channel gene have been associated with autism and other neurodevelopmental disorders including bipolar disorder, schizophrenia, and ADHD. The Timothy syndrome mutation is a rare de novo gain-of-function variant in CACNA1C that causes autism with high penetrance, providing a powerful avenue into investigating the role of CACNA1C variants in neurodevelopmental disorders. In our previous work, we demonstrated that an egl-19(gof) mutation, that is equivalent to the Timothy syndrome mutation in the human homolog CACNA1C, can disrupt termination of the PLM axon in C. elegans. Here, we find that the egl-19(gof) mutation disrupts the polarity of process outgrowth in the ALM neuron of C. elegans. We also find that the egl-19(gof) mutation can disrupt termination of the ALM axon. These results suggest that the Timothy syndrome mutation can disrupt multiple steps of axon development. Further work exploring the molecular mechanisms that underlie these perturbations in neuronal polarity and axon termination will give us better understanding to how variants in CACNA1C contribute to the axonal defects that underlie autism.
The C. elegans WDFY-3 protein is important for cargo selection during selective autophagy and for regulating axon termination. The C-terminal region of WDFY-3 contains BEACH, WD repeats, and FYVE-like domains, all of which are required for selective autophagy. WDFY-3 also contains a large N-terminal region that is relatively uncharacterized. Currently, wdfy-3(ok912) is the only mutant allele that has been characterized for this gene. This allele features a small deletion that is predicted to disrupt the C-terminal region of the protein. Here, we used CRISPR Cas9 to produce a new wdfy-3(cue30) allele that is a near complete deletion of the coding region. We report that, unlike the existing wdfy-3(ok912) allele, this new wdfy-3(cue30) null allele causes a weak overextension phenotype in the PLM axon. Like the existing wdfy-3(ok912) allele, the new wdfy-3(cue30) null allele can suppress PLM axon termination defects caused by an fsn-1 null allele. Creating and characterizing new wdfy-3 alleles will increase our understanding of this gene and could help elucidate more of the gene’s conserved functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.