Gap junctions are made up of connexin proteins, which comprise a multigene family in mammals. Targeted mutagenesis of connexin43 (Cx43), one of the most prevalent connexin proteins, showed that its absence was compatible with survival of mouse embryos to term, even though mutant cell lines showed reduced dye coupling in vitro. However, mutant embryos died at birth, as a result of a failure in pulmonary gas exchange caused by a swelling and blockage of the right ventricular outflow tract from the heart. This finding suggests that Cx43 plays an essential role in heart development but that there is functional compensation among connexins in other parts of the developing fetus.
Endoreduplication is an unusual form of cell cycle in which rounds of DNA synthesis repeat in the absence of intervening mitoses. How G1/S cyclin-dependent kinase (Cdk) activity is regulated during the mammalian endocycle is poorly understood. We show here that expression of the G1/S Cdk inhibitor p57Kip2 is induced coincidentally with the transition to the endocycle in trophoblast giant cells. Kip2 mRNA is constitutively expressed during subsequent endocycles, but the protein level fluctuates. In trophoblast giant cells synchronized for the first few endocycles, the p57 Kip2 protein accumulates only at the end of S-phase and then rapidly disappears a few hours before the onset of the next S-phase. The protein becomes stabilized by mutation of a C-terminal Cdk phosphorylation site. As a consequence, introduction of this stable form of p57Kip2 into giant cells blocks S-phase entry. These data imply that p57Kip2 is subject to phosphorylation-dependent turnover. Surprisingly, although this occurs in endoreduplicating giant cells, p57Kip2 is stable when ectopically expressed in proliferating trophoblast cells, indicating that these cells lack the mechanism for protein targeting and/or degradation. These data show that the appearance of p57Kip2 punctuates the completion of DNA replication, whereas its turnover is subsequently required to initiate the next round of endoreduplication in trophoblast giant cells. Cyclical expression of a Cdk inhibitor, by terminating G1/S Cdk activity, may help promote the resetting of DNA replication machinery.
The sodium/potassium pump, Na+,K+-ATPase, is generally understood to function as a heterodimer of two subunits, a catalytic α subunit and a noncatalytic, glycosylated β subunit. Recently, a putative third subunit, the γ subunit, was cloned. This small protein (6.5 kD) coimmunoprecipitates with the α and β subunits and is closely associated with the ouabain binding site on the holoenzyme, but its function is unknown. We have investigated the expression of the γ subunit in preimplantation mouse development, where Na+,K+-ATPase plays a critical role as the driving force for blastocoel formation (cavitation). Using reverse transcriptase-polymerase chain reaction, we demonstrated that the γ subunit mRNA accumulates continuously from the eight-cell stage onward and that it cosediments with polyribosomes from its time of first appearance. Confocal immunofluorescence microscopy revealed that the γ subunit itself accumulates and is localized at the blastomere surfaces up to the blastocyst stage. In contrast with the α and β subunits, the γ subunit is not concentrated in the basolateral surface of the polarized trophectoderm layer, but is strongly expressed at the apical surface as well. When embryos were treated with antisense oligodeoxynucleotide complementary to the γ subunit mRNA, ouabain-sensitive K+ transport (as indicated by 86Rb+ uptake) was reduced and cavitation delayed. However, Na+,K+-ATPase enzymatic activity was unaffected as determined by a direct phosphorylation assay (“back door” phosphorylation) applied to plasma membrane preparations. These results indicate that the γ subunit, although not an integral component of Na+,K+-ATPase, is an important determinant of active cation transport and that, as such, its embryonic expression is essential for blastocoel formation in the mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.