Much confusion in genome biology results from conflation of possible meanings of the word “function.” We suggest that, in this connection, attention should be paid to evolutionary biologists and philosophers who have previously dealt with this problem. We need only decide that although all genomic structures have effects, only some of them should be said to have functions. Although it will very often be difficult or impossible to establish function (strictly defined), it should not automatically be assumed. We enjoin genomicists in particular to pay greater attention to parsing biological effects.
One of several issues at play in the renewed debate over “junk DNA” is the organizational level at which genomic features might be seen as selected, and thus to exhibit function, as etiologically defined. The intuition frequently expressed by molecular geneticists that junk DNA is functional because it serves to “speed evolution” or as an “evolutionary repository” could be recast as a claim about selection between species (or clades) rather than within them, but this is not often done. Here, we review general arguments for the importance of selection at levels above that of organisms in evolution, and develop them further for a common genomic feature: the carriage of transposable elements (TEs). In many species, not least our own, TEs comprise a large fraction of all nuclear DNA, and whether they individually or collectively contribute to fitness—or are instead junk— is a subject of ongoing contestation. Even if TEs generally owe their origin to selfish selection at the lowest level (that of genomes), their prevalence in extant organisms and the prevalence of extant organisms bearing them must also respond to selection within species (on organismal fitness) and between species (on rates of speciation and extinction). At an even higher level, the persistence of clades may be affected (positively or negatively) by TE carriage. If indeed TEs speed evolution, it is at these higher levels of selection that such a function might best be attributed to them as a class.
The idea that much of our genome is irrelevant to fitness—is not the product of positive natural selection at the organismal level—remains viable. Claims to the contrary, and specifically that the notion of “junk DNA” should be abandoned, are based on conflating meanings of the word “function”. Recent estimates suggest that perhaps 90% of our DNA, though biochemically active, does not contribute to fitness in any sequence-dependent way, and possibly in no way at all. Comparisons to vertebrates with much larger and smaller genomes (the lungfish and the pufferfish) strongly align with such a conclusion, as they have done for the last half-century.
A universal Tree of Life (TOL) has long been a goal of molecular phylogeneticists, but reticulation at the level of genes and possibly at the levels of cells and species renders any simple interpretation of such a TOL, especially as applied to prokaryotes, problematic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.