Plant microbiomes are critical components to plant health and can influence disease outcomes. We provide empirical data describing disease-induced shifts within the citrus microbiome at different levels of Huanglongbing (HLB) disease severity. HLB is associated with an invasive phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), that is introduced into the aerial portions of the tree by an insect vector. Disease manifests as above ground foliar and fruit symptoms and significant root decline below ground. During the early phase of disease, there were depletions of putative keystone taxa in leaves and roots, followed by enrichments of putative beneficial taxa suggesting a microbially-derived immune response involved in plant protection that is ancillary to immune components encoded in the plant’s genome. In the late phase of disease, we observed enrichments of parasitic and saprophytic microorganisms particularly in the roots. The community shifts within the root compartment are emblematic of a disease-induced dysbiosis where pathogens other than CLas begin to dominate the community. Furthermore, we define key taxa enriched in trees with a slower rate of disease development, referred to as survivor trees, that are hallmarks of those found in trees in the early phase of disease that may be drivers of the survivor tree phenotype. We propose a disease ecology model that illustrates the relationship between the pathogen, the microbiome and the host plant that highlights microorganisms that may serve as disease facilitators or antagonists.
Huanglongbing (HLB) is a destructive citrus disease that is lethal to all commercial citrus plants, making it the most serious citrus disease and one of the most serious plant diseases. Because of the severity of HLB and the paucity of effective control measures, we structured this study to encompass the entirety of the citrus microbiome and the chemistries associated with that microbial community. We describe the spatial niche diversity of bacteria and fungi associated with citrus roots, stems, and leaves using traditional microbial culturing integrated with culture-independent methods. Using the culturable sector of the citrus microbiome, we created a microbial repository using a high-throughput bulk culturing and microbial identification pipeline. We integrated an in vitro agar diffusion inhibition bioassay into our culturing pipeline that queried the repository for antimicrobial activity against Liberibacter crescens, a culturable surrogate for the nonculturable “Candidatus Liberibacter asiaticus” bacterium associated with HLB. We identified microbes with robust inhibitory activity against L. crescens that include the fungi Cladosporium cladosporioides and Epicoccum nigrum and bacterial species of Pantoea, Bacillus, and Curtobacterium. Purified bioactive natural products with anti-“Ca. Liberibacter asiaticus” activity were identified from the fungus C. cladosporioides. Bioassay-guided fractionation of an organic extract of C. cladosporioides yielded the natural products cladosporols A, C, and D as the active agents against L. crescens. This work serves as a foundation for unraveling the complex chemistries associated with the citrus microbiome to begin to understand the functional roles of members of the microbiome, with the long-term goal of developing anti-“Ca. Liberibacter asiaticus” bioinoculants that thrive in the citrus holosystem. IMPORTANCE Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens, a culturable surrogate for the unculturable HLB-associated bacterium “Candidatus Liberibacter asiaticus,” we tested the hypothesis that members of the citrus microbiome produce potential anti-“Ca. Liberibacter asiaticus” natural products with potential anti-“Ca. Liberibacter asiaticus” activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens.
Citrus yellow-vein disease (CYVD) was first reported in California in 1957. We now report that CYVD is associated with a virus-like agent, provisionally named citrus yellow-vein associated virus (CYVaV). The CYVaV RNA genome has 2,692 nucleotides and codes for two discernable open reading frames (ORFs). ORF1 encodes a protein of 190 amino acid (aa) whereas ORF2 is presumably generated by a −1 ribosomal frameshifting event just upstream of the ORF1 termination signal. The frameshift product (717 aa) encodes the RNA-dependent RNA polymerase (RdRp). Phylogenetic analyses suggest that CYVaV is closely related to unclassified virus-like RNAs in the family Tombusviridae. Bio-indexing and RNA-seq experiments indicate that CYVaV can induce yellow vein symptoms independently of known citrus viruses or viroids.
Citrus production throughout the world is being severely threatened by Huanglongbing (HLB), which is a disease associated with the bacteria ‘Candidatus Liberibacter asiaticus’ (CLas), africanus, and americanus. This Resource Announcement provides amplicon-based next generation sequencing (NGS) datasets of the bacterial and fungal rRNA internal transcribed spacer (ITS) region from CLas-infected citrus budwood, leaves, and roots from five orchards located in different geographical regions in Florida (USA). To our knowledge, this is the first amplicon-based NGS study (i) that describes the fungal taxa associated with citrus and (ii) that provides comparative analyses of the bacterial and fungal taxa associated with budwood, leaves, and roots from the same citrus trees. This report also provides the sample metadata linked to these sequence datasets including HLB severity rating, tissue type, citrus rootstock, citrus scion, geographical region, and year trees were planted. When analyzed with other similar datasets, we anticipate that researchers will be able to obtain a greater understanding of the factors that shape the citrus microbiome as well as identify individual microorganisms or consortia of microorganisms that play a role in HLB suppression or exacerbation.
Citrus tristeza virus (CTV) isolates collected from citrus germplasm, dooryard and field trees in California from 1914 have been maintained in planta under quarantine in the Citrus Clonal Protection Program (CCPP), Riverside, California. This collection, therefore, represents populations of CTV isolates obtained over time and space in California. To determine CTV genetic diversity in this context, genotypes of CTV isolates from the CCPP collection were characterized using multiple molecular markers (MMM). Genotypes T30, VT, and T36 were found at high frequencies with T30 and T30+VT genotypes being the most abundant. The MMM analysis did not identify T3 and B165/T68 genotypes; however, biological and phylogenetic analysis suggested some relationships of CCPP CTV isolates with these two genotypes. Phylogenetic analysis of the CTV coat protein (CP) gene sequences classified the tested isolates into seven distinct clades. Five clades were in association with the standard CTV genotypes T30, T36, T3, VT, and B165/T68. The remaining two identified clades were not related to any standard CTV genotypes. Spatiotemporal analysis indicated a trend of reduced genotype and phylogenetic diversity as well as virulence from southern California (SC) at early (1907–1957) in comparison to that of central California (CC) isolates collected from later (1957–2009) time periods. CTV biological characterization also indicated a reduced number and less virulent stem pitting (SP) CTV isolates compared to seedling yellows isolates introduced to California. This data provides a historical insight of the introduction, movement, and genetic diversity of CTV in California and provides genetic and biological information useful for CTV quarantine, eradication, and disease management strategies such as CTV-SP cross protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.