Many image processing tasks are naturally expressed as a pipeline of small computational kernels known as stencils. Halide is a popular domain-specific language and compiler designed to implement image processing algorithms. Halide uses simple language constructs to express what to compute and a separate scheduling colanguage for expressing when and where to perform the computation. This approach has demonstrated performance comparable to or better than hand-optimized code. Until now, however, Halide has been restricted to parallel shared memory execution, limiting its performance for memory-bandwidth-bound pipelines or largescale image processing tasks. We present an extension to Halide to support distributedmemory parallel execution of complex stencil pipelines. These extensions compose with the existing scheduling constructs in Halide, allowing expression of complex computation and communication strategies. Existing Halide applications can be distributed with minimal changes, allowing programmers to explore the tradeoff between recomputation and communication with little effort. Approximately 10 new of lines code are needed even for a 200 line, 99 stage application. On nine image processing benchmarks, our extensions give up to a 1.4× speedup on a single node over regular multithreaded execution with the same number of cores, by mitigating the effects of non-uniform memory access. The distributed benchmarks achieve up to 18× speedup on a 16 node testing machine and up to 57× speedup on 64 nodes of the NERSC Cori supercomputer.
Many image processing tasks are naturally expressed as a pipeline of small computational kernels known as stencils. Halide is a popular domain-specific language and compiler designed to implement image processing algorithms. Halide uses simple language constructs to express what to compute and a separate scheduling colanguage for expressing when and where to perform the computation. This approach has demonstrated performance comparable to or better than hand-optimized code. Until now, however, Halide has been restricted to parallel shared memory execution, limiting its performance for memory-bandwidth-bound pipelines or largescale image processing tasks.We present an extension to Halide to support distributedmemory parallel execution of complex stencil pipelines. These extensions compose with the existing scheduling constructs in Halide, allowing expression of complex computation and communication strategies. Existing Halide applications can be distributed with minimal changes, allowing programmers to explore the tradeoff between recomputation and communication with little effort. Approximately 10 new of lines code are needed even for a 200 line, 99 stage application. On nine image processing benchmarks, our extensions give up to a 1.4× speedup on a single node over regular multithreaded execution with the same number of cores, by mitigating the effects of non-uniform memory access. The distributed benchmarks achieve up to 18× speedup on a 16 node testing machine and up to 57× speedup on 64 nodes of the NERSC Cori supercomputer.
The CSI framework [15] provides comprehensive static instrumentation that a compiler can insert into a program-under-test so that dynamic-analysis tools -memory checkers, race detectors, cache simulators, performance profilers, code-coverage analyzers, etc.can observe and investigate runtime behavior. Heretofore, tools based on compiler instrumentation would each separately modify the compiler to insert their own instrumentation. In contrast, CSI inserts a standard collection of instrumentation hooks into the program-under-test. Each CSI-tool is implemented as a library that defines relevant hooks, and the remaining hooks are "nulled" out and elided during either compile-time or link-time optimization, resulting in instrumented runtimes on par with custom instrumentation. CSI allows many compiler-based tools to be written as simple libraries without modifying the compiler, lowering the bar for the development of dynamic-analysis tools.We have defined a standard API for CSI and modified LLVM to insert CSI hooks into the compiler's internal representation (IR) of the program. The API organizes IR objects -such as functions, basic blocks, and memory accesses -into flat and compact ID spaces, which not only simplifies the building of tools, but surprisingly enables faster maintenance of IR-object data than do traditional hash tables. CSI hooks contain a "property" parameter that allows tools to customize behavior based on static information without introducing overhead. CSI provides "forensic" tables that tools can use to associate IR objects with source-code locations and to relate IR objects to each other.To evaluate the efficacy of CSI, we implemented six demonstration CSI-tools. One of our studies shows that compiling with CSI and linking with the "null" CSI-tool produces a tool-instrumented executable that is as fast as the original uninstrumented code. Another study, using a CSI port of Google's ThreadSanitizer, shows that the CSI-tool rivals the performance of Google's custom compiler-based
The CSI framework provides comprehensive static instrumentation that a compiler can insert into a program-under-test so that dynamic-analysis tools - memory checkers, race detectors, cache simulators, performance profilers, code-coverage analyzers, etc. - can observe and investigate runtime behavior. Heretofore, tools based on compiler instrumentation would each separately modify the compiler to insert their own instrumentation. In contrast, CSI inserts a standard collection of instrumentation hooks into the program-under-test. Each CSI-tool is implemented as a library that defines relevant hooks, and the remaining hooks are "nulled" out and elided during either compile-time or link-time optimization, resulting in instrumented runtimes on par with custom instrumentation. CSI allows many compiler-based tools to be written as simple libraries without modifying the compiler, lowering the bar for the development of dynamic-analysis tools. We have defined a standard API for CSI and modified LLVM to insert CSI hooks into the compiler's internal representation (IR) of the program. The API organizes IR objects - such as functions, basic blocks, and memory accesses - into flat and compact ID spaces, which not only simplifies the building of tools, but surprisingly enables faster maintenance of IR-object data than do traditional hash tables. CSI hooks contain a "property" parameter that allows tools to customize behavior based on static information without introducing overhead. CSI provides "forensic" tables that tools can use to associate IR objects with source-code locations and to relate IR objects to each other. To evaluate the efficacy of CSI, we implemented six demonstration CSI-tools. One of our studies shows that compiling with CSI and linking with the "null" CSI-tool produces a tool-instrumented executable that is as fast as the original uninstrumented code. Another study, using a CSI port of Google's ThreadSanitizer, shows that the CSI-tool rivals the performance of Google's custom compiler-based implementation. All other demonstration CSI tools slow down the execution of the program-under-test by less than 70%.
The CSI framework provides comprehensive static instrumentation that a compiler can insert into a program-under-test so that dynamic-analysis tools - memory checkers, race detectors, cache simulators, performance profilers, code-coverage analyzers, etc. - can observe and investigate runtime behavior. Heretofore, tools based on compiler instrumentation would each separately modify the compiler to insert their own instrumentation. In contrast, CSI inserts a standard collection of instrumentation hooks into the program-under-test. Each CSI-tool is implemented as a library that defines relevant hooks, and the remaining hooks are "nulled" out and elided during either compile-time or link-time optimization, resulting in instrumented runtimes on par with custom instrumentation. CSI allows many compiler-based tools to be written as simple libraries without modifying the compiler, lowering the bar for the development of dynamic-analysis tools. We have defined a standard API for CSI and modified LLVM to insert CSI hooks into the compiler's internal representation (IR) of the program. The API organizes IR objects - such as functions, basic blocks, and memory accesses - into flat and compact ID spaces, which not only simplifies the building of tools, but surprisingly enables faster maintenance of IR-object data than do traditional hash tables. CSI hooks contain a "property" parameter that allows tools to customize behavior based on static information without introducing overhead. CSI provides "forensic" tables that tools can use to associate IR objects with source-code locations and to relate IR objects to each other. To evaluate the efficacy of CSI, we implemented six demonstration CSI-tools. One of our studies shows that compiling with CSI and linking with the "null" CSI-tool produces a tool-instrumented executable that is as fast as the original uninstrumented code. Another study, using a CSI port of Google's ThreadSanitizer, shows that the CSI-tool rivals the performance of Google's custom compiler-based implementation. All other demonstration CSI tools slow down the execution of the program-under-test by less than 70%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.