The dimeric diketopiperazine (DKPs) alkaloids are a diverse family of natural products (NPs) whose unique structural architectures and biological activities have inspired the development of new synthetic methodology to access these molecules. However, catalystcontrolled methods that enable the selective formation of constitutional and stereoisomeric dimers from a single monomer are lacking. To resolve this long-standing synthetic challenge, we sought to characterize the biosynthetic enzymes that assemble these NPs for application in biocatalytic syntheses. Genome mining enabled identification of the cytochrome P450, NzeB (derived from Streptomyces sp. NRRL F-5053), which catalyzes both intermolecular carbon-carbon (C-C) and carbon-nitrogen (C-N) bond formation, generating all currently known DKP dimer scaffolds isolated from bacterial sources. To identify the molecular basis for the flexible site-, stereo-, and chemoselectivity of NzeB, we obtained high-resolution crystal structures (1.5Å) of the protein in complex with native and non-native substrates. This, to our knowledge, represents the first crystal structure of an oxidase catalyzing direct, intermolecular C-H amination. Site-directed mutagenesis was employed to assess the role individual active site residues play in guiding selective DKP dimerization. Finally, computational approaches were employed to evaluate plausible mechanisms regarding NzeB function and its ability to catalyze both CC and C-N bond formation. These results provide a structural and computational rationale for the catalytic versatility of NzeB, as well as new insights into variables that control selectivity of CYP450 diketopiperazine dimerases. ASSOCIATED CONTENT Supporting Information The Supporting Information is available free of charge on the ACS Publications website.
Generation of reactive intermediates and interception of these fleeting species under physiological conditions is a common strategy employed by Nature to build molecular complexity. However, selective formation of these species under mild conditions using classical synthetic techniques is an outstanding challenge. Here, we demonstrate the utility of biocatalysis in generating o-quinone methide intermediates with precise chemoselectivity under mild, aqueous conditions. Specifically, α-ketoglutarate-dependent non-heme iron enzymes, CitB and ClaD, are employed to selectively modify benzylic C–H bonds of o-cresol substrates. In this transformation, biocatalytic hydroxylation of a benzylic C–H bond affords a benzylic alcohol product which, under the aqueous reaction conditions, is in equilibrium with the corresponding o-quinone methide. o-Quinone methide interception by a nucleophile or a dienophile allows for one-pot conversion of benzylic C–H bonds into C–C, C–N, C–O, and C–S bonds in chemoenzymatic cascades on preparative scale. The chemoselectivity and mild nature of this platform is showcased here by the selective modification of peptides and chemoenzymatic synthesis of the chroman natural product (−)-xyloketal D.
Enzymes from secondary metabolic pathways possess broad potential for the selective synthesis of complex bioactive molecules. However, the practical application of these enzymes for organic synthesis is dependent on the development of efficient, economical, operationally simple, and well-characterized systems for preparative scale reactions. We sought to bridge this knowledge gap for the selective biocatalytic synthesis of β-hydroxy-α-amino acids, which are important synthetic building blocks. To achieve this goal, we demonstrated the ability of ObiH, an l-threonine transaldolase, to achieve selective milligram-scale synthesis of a diverse array of non-standard amino acids (nsAAs) using a scalable whole cell platform. We show how the initial selectivity of the catalyst is high and how the diastereomeric ratio of products decreases at high conversion due to product re-entry into the catalytic cycle. ObiH-catalyzed reactions with a variety of aromatic, aliphatic and heterocyclic aldehydes selectively generated a panel of βhydroxy-α-amino acids possessing broad functional-group diversity. Furthermore, we demonstrated that ObiH-generated β-hydroxy-α-amino acids could be modified through additional transformations to access important motifs, such as β-chloro-αamino acids and substituted α-keto acids.
Technologies enabling new enzyme discovery and efficient protein engineering have spurred intense interest in the development of biocatalytic reactions. In recent years, whole‐cell biocatalysis has received attention as a simple, efficient, and scalable biocatalytic reaction platform. Inspired by these developments, we have established a whole‐cell protocol for oxidative dearomatization of phenols using the flavin‐dependent monooxygenase, TropB. This approach provides a scalable biocatalytic platform for accessing gram‐scale quantities of chiral synthetic building blocks.
Deuterated amino acids have been recognized for their utility in drug development, for facilitating nuclear magnetic resonance (NMR) analysis, and as probes for enzyme mechanism. Small molecule-based methods for the site-selective synthesis of deuterated amino acids typically involve de novo synthesis of the compound from deuterated precursors. In comparison, enzymatic methods for introducing deuterium offer improved efficiency, operating directly on free amino acids to achieve hydrogen-deuterium (H/D) exchange. However, site selectivity remains a significant challenge for enzyme-mediated deuteration, limiting access to desirable deuteration motifs. Here, we use enzyme-catalyzed deuteration, combined with steady-state kinetic analysis and ultraviolet (UV)−vis spectroscopy to probe the mechanism of a two-protein system responsible for the biosynthesis of L-allo-Ile. We show that an aminotransferase (DsaD) can pair with a small partner protein (DsaE) to catalyze Cα and Cβ H/D exchange of amino acids, while reactions without DsaE lead exclusively to Cα-deuteration. With conditions for improved catalysis, we evaluate the substrate scope for Cα/Cβ-deuteration and demonstrate the utility of this system for preparative-scale, selective labeling of amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.