Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) is an enticing antimalarial drug target. Novel chemotypes are needed because existing inhibitors have safety issues that may prevent further development. This work demonstrates isoxazole-based compounds are potent ATP competitive inhibitors of PfPKG and discloses a new analogue in this series. Isoxazoles 3 and 5 had K i values that are comparable to a known standard, 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H pyrrol-3-yl] pyridine. They also exhibited excellent selectivity for PfPKG over the human orthologue and the gatekeeper mutant T618Q PfPKG, which mimics the less accessible binding site of the human orthologue. The human orthologue's larger binding site volume is predicted to explain the selectivity of the inhibitors for the P. falciparum enzyme.
Filariasis is a tropical disease caused by the parasitic nematodes Wuchereria bancrofti and Brugia malayi. Known inhibitors of dihydrofolate reductase (DHFR) have been previously shown to kill Brugia malayi nematodes and to inhibit Brugia malayi DHFR (BmDHFR) at nanomolar concentrations. These data suggest that BmDHFR is a potential target for the treatment of filariasis. Here, protocols for cloning, expression and purification of Wuchereria bancrofti DHFR (WbDHFR) were developed. The Uniprot entry J9F199-1 predicts a 172 amino acid protein for WbDHFR but alignment of this sequence to the previously described BmDHFR shows that this WbDHFR sequence lacks a crucial, conserved 13 amino acid loop. The presence of the loop in WbDHFR is supported by a noncanonical splicing event and the loop sequence was therefore included in the gene design. Subsequently, the KM for dihydrofolate (3.7 ± 2 μM), kcat (7.4 ± 0.6 s-1), and pH dependence of activity were determined. IC50 values of methotrexate, trimethoprim, pyrimethamine, raltitrexed, aminopterin, (-)-epicatechin gallate, (-)-epicatechin, and vitexin were measured for WbDHFR and BmDHFR. Methotrexate and structurally related aminopterin were found to be effective inhibitors of WbDHFR, with an KI of 1.2 ± 0.2 nM and 2.1 ± 0.5 nM, respectively, suggesting that repurposing of known antifolate compound may be an effective strategy to treating filariasis. Most compounds showed similar inhibition profiles toward both enzymes, suggesting that the two enzymes have important similarities in their active site environments and can be targeted with the same compound, once a successful inhibitor is identified.
The
discovery of new targets for the treatment of malaria, in particular
those aimed at the pre-erythrocytic stage in the life cycle, advanced
with the demonstration that orally administered inhibitors of Plasmodium falciparum cGMP-dependent protein kinase
(PfPKG) could clear infection in a murine model. This enthusiasm was
tempered by unsatisfactory safety and/or pharmacokinetic issues found
with these chemotypes. To address the urgent need for new scaffolds,
this paper presents initial structure–activity relationships
in an imidazole scaffold at four positions, representative in vitro ADME, hERG characterization, and cell-based antiparasitic
activity. This series of PfPKG inhibitors has good in vitro PfPKG potency, low hERG activity, and cell-based antiparasitic activity
against multiple Plasmodium species
that appears to be correlated with the in vitro potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.