An A‑ and B‑site substitutional study of SrFeO3−δ perovskites (A’xA1−xB’yB1−yO3−δ, where A = Sr and B = Fe) was performed for a two‑step solar thermochemical air separation cycle. The cycle steps encompass (1) the thermal reduction of A’xSr1−xB’yFe1−yO3−δ driven by concentrated solar irradiation and (2) the oxidation of A’xSr1−xB’yFe1−yO3−δ in air to remove O2, leaving N2. The oxidized A’xSr1−xB’yFe1−yO3−δ is recycled back to the first step to complete the cycle, resulting in the separation of N2 from air and concentrated solar irradiation. A-site substitution fractions between 0 ≤ x ≤ 0.2 were examined for A’ = Ba, Ca, and La. B-site substitution fractions between 0 ≤ y ≤ 0.2 were examined for B’ = Cr, Cu, Co, and Mn. Samples were prepared with a modified Pechini method and characterized with X-ray diffractometry. The mass changes and deviations from stoichiometry were evaluated with thermogravimetry in three screenings with temperature- and O2 pressure-swings between 573 and 1473 K and 20% O2/Ar and 100% Ar at 1 bar, respectively. A’ = Ba or La and B’ = Co resulted in the most improved redox capacities amongst temperature- and O2 pressure-swing experiments.
Two-step solar thermochemical cycles based on reversible reactions of SrFeO3-δ and (Ba,La)0.15Sr0.85FeO3-δ perovskites were considered for air separation. The cycle steps encompass (1) the thermal reduction of SrFeO3-δ or (Ba,La)0.15Sr0.85FeO3-δ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.