Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50–200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking.
The neural control of balance during locomotion is currently not well understood, even in the light of considerable advances in research on balance during standing. In this paper, we lay out the control problem for this task and present a list of different strategies available to the central nervous system to solve this problem. We discuss the biomechanics of the walking body, using a simplified model that iteratively gains degrees of freedom and complexity. Each addition allows for different control strategies, which we introduce in turn: foot placement shift, ankle strategy, hip strategy, and push-off modulation. The dynamics of the biomechanical system are discussed using the phase space representation, which allows illustrating the mechanical effect of the different control mechanisms. This also enables us to demonstrate the effects of common general stability strategies, such as increasing step width and cadence.
Lateral balance is a critical factor in keeping the human body upright during walking. Two important mechanisms for balance control are the stepping strategy, in which the foot placement is changed in the direction of a sensed fall to modulate how the gravitational force acts on the body, and the lateral ankle strategy, in which the body mass is actively accelerated by an ankle torque. Currently, there is minimal evidence about how these two strategies complement one another to achieve upright balance during locomotion. We use Galvanic vestibular stimulation (GVS) to induce the sensation of a fall at heel-off during gait initiation. We found that young healthy adults respond to the illusory fall using both the lateral ankle strategy and the stepping strategy. The stance foot center of pressure (CoP) is shifted in the direction of the perceived fall by ≈2.5 mm, starting ≈247 ms after stimulus onset. The foot placement of the following step is shifted by ≈15 mm in the same direction. The temporal delay between these two mechanisms suggests that they independently contribute to upright balance during locomotion, potentially in a serially coordinated manner. Modeling results indicate that without the lateral ankle strategy, a much larger step width is required to maintain upright balance, suggesting that the small but early CoP shift induced by the lateral ankle strategy is critical for upright stability during locomotion. The relative importance of each mechanism and how neurological disorders may affect their implementation remain an open question.
Our main interest is to identify how humans maintain upright while walking. Balance during standing and walking is different, primarily due to a gait cycle which the nervous system must contend with a variety of body configurations and frequent perturbations (i.e., heel-strike). We have identified three mechanisms that healthy young adults use to respond to a visually perceived fall to the side. The lateral ankle mechanism and the foot placement mechanism are used to shift the center of pressure in the direction of the perceived fall, and the center of mass away from the perceived fall. The push-off mechanism, a systematic change in ankle plantarflexion angle in the trailing leg, results in fine adjustments to medial-lateral balance near the end of double stance. The focus here is to understand how the three basic balance mechanisms are coordinated to produce an overall balance response. The results indicate that lateral ankle and foot placement mechanisms are inversely related. Larger lateral ankle responses lead to smaller foot placement changes. Correlations involving the push-off mechanism, while significant, were weak. However, the consistency of the correlations across stimulus conditions suggest the push-off mechanism has the role of small adjustments to medial-lateral movement near the end of the balance response. This verifies that a fundamental feature of human bipedal gait is a highly flexible balance system that recruits and coordinates multiple mechanisms to maintain upright balance during walking to accommodate extreme changes in body configuration and frequent perturbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.