Perivascular adipose tissue (PVAT) is increasingly recognized as an essential layer of the functional vasculature, being responsible for producing vasoactive substances and assisting arterial stress relaxation. Here we test the hypothesis that PVAT reduces aortic stiffness. Our model was the thoracic aorta of the male Sprague Dawley rat. Uniaxial mechanical tests for three groups of tissue were performed: aorta +PVAT (+PVAT), aorta - PVAT (-PVAT), and isolated PVAT (PVAT only). The output of the mechanical test is reported in the form of a Cauchy stress-stretch curve. This work presents a novel, physiologically relevant approach to measure mechanical stiffness ex vivo in isolated PVAT. Low-stress stiffness (), high-stress stiffness (), and the stress corresponding to a stretch of 1.2 () were measured as metrics of distensibility. The low-stress stiffness was largest in the -PVAT samples and smallest in PVAT only samples. Both the high-stress stiffness and the stress at 1.2 stretch were significantly higher in -PVAT samples when compared to +PVAT samples. Taken together these results suggest that -PVAT samples are stiffer (less distensible) both at low stress (not significant) as well as at high stress (significant) when compared to +PVAT samples. These conclusions are supported by the results of the continuum mechanics material model we also used to interpret the same experimental data. Thus, tissue stiffness is significantly lower when considering PVAT as part of the aortic wall. As such, PVAT should be considered as a target for improving vascular function in diseases with elevated aortic stiffness, including hypertension.
The urinary bladder is a highly dynamic organ, that undergoes large deformations several times a day. Mechanical characteristics of the tissue are crucial in determining the function, and dysfunction, of the organ. Yet, literature reporting on the mechanical properties of human bladder tissue is scarce and, at times, contradictory. In this study, we focused on mechanically testing tissue from both human and pig bladders using identical protocols, to validate the use of pigs as a model for the human bladder. Furthermore, we tested the effect on tissue mechanical properties of two treatments, elastase to digest elastin fibers and oxybutynin to reduce smooth muscle cells spasticity, as well as of the anatomical direction of testing. We also implemented two different material models to aid in the interpretation of the experimental results. We found that human tissue behaves similarly to pig tissue at high deformations (collagen-dominated behavior) while we detected differences between the species at low deformations (amorphous matrix-dominated behavior). Our results also suggest that elastin could play a role in determining the behavior of the collagen fibers network. Finally, we confirmed the anisotropy of the tissue which reached higher stresses in the transverse when compared to the longitudinal direction.
We introduce a data-driven fractional modeling framework for complex materials, and particularly bio-tissues. From multi-step relaxation experiments of distinct anatomical locations of porcine urinary bladder, we identify an anomalous relaxation character, with two power-law-like behaviors for short/long long times, and nonlinearity for strains greater than 25%. The first component of our framework is an existence study, to determine admissible fractional viscoelastic models that qualitatively describe linear relaxation. After the linear viscoelastic model is selected, the second stage adds large-strain effects to the framework through a fractional quasi-linear viscoelastic approach for the nonlinear elastic response of the bio-tissue of interest. From single-step relaxation data of the urinary bladder, a fractional Maxwell model captures both short/long-term behaviors with two fractional orders, being the most suitable model for small strains at the first stage. For the second stage, multi-step relaxation data under large strains were employed to calibrate a four-parameter fractional quasi-linear viscoelastic model, that combines a Scott-Blair relaxation function and an exponential instantaneous stress response, to describe the elastin/collagen phases of bladder rheology. Our obtained results demonstrate that the employed fractional quasi-linear model, with a single fractional order in the range α = 0.25–0.30, is suitable for the porcine urinary bladder, producing errors below 2% without need for recalibration over subsequent applied strains. We conclude that fractional models are attractive tools to capture the bladder tissue behavior under small-to-large strains and multiple time scales, therefore being potential alternatives to describe multiple stages of bladder functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.