Interest in unmanned aerial system (UAS) powered solutions for 6G communication networks has grown immensely with the widespread availability of machine learning based autonomy modules and embedded graphical processing units (GPUs). While these technologies have revolutionized the possibilities of UAS solutions, designing an operable, robust autonomy framework for UAS remains a multi-faceted and difficult problem. In this work, we present our novel, modular framework for UAS autonomy, entitled MR-iFLY, and discuss how it may be extended to enable 6G swarm solutions. We begin by detailing the challenges associated with machine learning based UAS autonomy on resource constrained devices. Next, we describe in depth, how MR-iFLY's novel depth estimation and collision avoidance technology meets these challenges. Lastly, we describe the various evaluation criteria we have used to measure performance, show how our optimized machine vision components provide up to 15X speedup over baseline models and present a flight demonstration video of MR-iFLY's vision-based collision avoidance technology. We argue that these empirical results substantiate MR-iFLY as a candidate for use in reducing communication overhead between nodes in 6G communication swarms by providing standalone collision avoidance and navigation capabilities.
Unmanned Aerial Systems (UAS) are being increasingly deployed for commercial, civilian, and military applications. The current UAS state-of-the-art still depends on a remote human controller with robust wireless links to perform several of these applications. The lack of autonomy restricts the domains of application and tasks for which a UAS can be deployed. This is even more relevant in tactical and rescue scenarios where the UAS needs to operate in a harsh operating environment with unreliable wireless links. Enabling autonomy and intelligence to the UAS will help overcome this hurdle and expand its use improving safety and efficiency. The exponential increase in computing resources and the availability of large amount of data in this digital era has led to the resurgence of machine learning from its last winter. Therefore, in this chapter, we discuss how some of the advances in machine learning, specifically deep learning and reinforcement learning can be leveraged to develop next-generation autonomous UAS.We first begin motivating this chapter by discussing the application, challenges, and opportunities of the current UAS in the introductory section. We then provide an overview of some of the key deep learning and reinforcement learning techniques discussed throughout this chapter. A key area of focus that will be essential to enable autonomy to UAS is computer vision. Accordingly, we discuss how deep learning approaches have been used to accomplish some of the basic tasks that contribute to providing UAS autonomy. Then we discuss how reinforcement learning is explored for using this information to provide autonomous control and navigation for UAS. Next, we provide the reader with directions to choose appropriate simulation suites and hardware platforms that will help to rapidly prototype novel machine learning based solutions for UAS. We additionally discuss the open problems and challenges pertaining to each aspect of developing autonomous UAS solutions to shine light on potential research areas. Finally, we provide a brief account of the UAS safety and regulations prior to concluding the chapter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.