Fusarium is a complex genus of ascomycete fungi that consists of plant pathogens of agricultural relevance. Controlling Fusarium infection in crops that leads to substantial yield losses is challenging. These economic losses along with environmental and human health concerns over the usage of chemicals in attaining disease control are shifting focus toward the use of biocontrol agents for effective control of phytopathogenic Fusarium spp. In the present study, an analysis of the plant-growth promoting (PGP) and biocontrol attributes of four bacilli (Bacillus simplex 30N-5, B. simplex 11, B. simplex 237, and B. subtilis 30VD-1) has been conducted. The production of cellulase, xylanase, pectinase, and chitinase in functional assays was studied, followed by in silico gene analysis of the PGP-related and biocontrol-associated genes. Of all the bacilli included in this study, B. subtilis 30VD-1 (30VD-1) demonstrated the most effective antagonism against Fusarium spp. under in vitro conditions. Additionally, 100 μg/ml of the crude 1-butanol extract of 30VD-1’s cell-free culture filtrate caused about 40% inhibition in radial growth of Fusarium spp. Pea seed bacterization with 30VD-1 led to considerable reduction in wilt severity in plants with about 35% increase in dry plant biomass over uninoculated plants growing in Fusarium-infested soil. Phase contrast microscopy demonstrated distortions and abnormal swellings in F. oxysporum hyphae on co-culturing with 30VD-1. The results suggest a multivariate mode of antagonism of 30VD-1 against phytopathogenic Fusarium spp., by producing chitinase, volatiles, and other antifungal molecules, the characterization of which is underway.
In previous work, we showed that coinoculating Rhizobium leguminosarum bv. viciae 128C53 and Bacillus simplex 30N-5 onto Pisum sativum L. roots resulted in better nodulation and increased plant growth. We now expand this research to include another alpha-rhizobial species as well as a beta-rhizobium, Burkholderia tuberum STM678. We first determined whether the rhizobia were compatible with B. simplex 30N-5 by cross-streaking experiments, and then Medicago truncatula and Melilotus alba were coinoculated with B. simplex 30N-5 and Sinorhizobium (Ensifer) meliloti to determine the effects on plant growth. Similarly, B. simplex 30N-5 and Bu. tuberum STM678 were coinoculated onto Macroptilium atropurpureum. The exact mechanisms whereby coinoculation results in increased plant growth are incompletely understood, but the synthesis of phytohormones and siderophores, the improved solubilization of inorganic nutrients, and the production of antimicrobial compounds are likely possibilities. Because B. simplex 30N-5 is not widely recognized as a Plant Growth Promoting Bacterial (PGPB) species, after sequencing its genome, we searched for genes proposed to promote plant growth, and then compared these sequences with those from several well studied PGPB species. In addition to genes involved in phytohormone synthesis, we detected genes important for the production of volatiles, polyamines, and antimicrobial peptides as well as genes for such plant growth-promoting traits as phosphate solubilization and siderophore production. Experimental evidence is presented to show that some of these traits, such as polyamine synthesis, are functional in B. simplex 30N-5, whereas others, e.g., auxin production, are not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.