We
experimentally demonstrate polarization-selective two-dimensional
(2D) vibrational-electronic (VE) spectroscopy on a transition-metal
mixed-valence complex where the cyanide stretching vibrations are
coupled to the metal-to-metal charge-transfer transition. A simultaneous
fitting of the parallel and crossed polarized 2D VE spectra quantifies
the relative vibronic coupling strengths and angles between the charge-transfer
transition and three coupled cyanide stretching vibrations in a mode-specific
manner. In particular, we find that the bridging vibration, which
modulates the distance between the transition-metal centers, is oriented
nearly parallel to the charge-transfer axis and is 9 times more strongly
coupled to the electronic transition than the radial vibration, which
is oriented almost perpendicular to the charge-transfer axis. The
results from this experiment allow us to map the spectroscopically
observed vibronic coordinates onto the molecular frame providing a
general method to spatially resolve vibronic energy transfer on a
femtosecond time scale.
The only known phosphorus-containing organic compounds of extraterrestrial origin, alkylphosphonic acids, were discovered in the Murchison meteorite and have accelerated the hypothesis that reduced oxidation states of phosphorus were delivered to early Earth and served as a prebiotic source of phosphorus. While previous studies looking into the formation of these alkylphosphonic acids have focused on the iron-nickel phosphide mineral schreibersite and phosphorous acid as a source of phosphorus, this work utilizes phosphine (PH 3), which has been discovered in the circumstellar envelope of IRC +10216, in the atmosphere of Jupiter and Saturn, and believed to be the phosphorus carrier in comet 67P/Churyumov-Gerasimenko. Phosphine ices prepared with interstellar molecules such as carbon dioxide, water, and methane were subjected to electron irradiation, which simulates the secondary electrons produced from galactic cosmic rays penetrating the ice, and probed using infrared spectroscopy to understand the possible formation of alkylphosphonic acids and their precursors on interstellar icy grains that could become incorporated into meteorites such as Murchison. We present the first study and results on the possible synthesis of alkylphosphonic acids produced from phosphine-mixed ices under interstellar conditions. All functional groups of alkylphosphonic acids were detected through infrared spectroscopically, suggesting that this class of molecules can be formed in interstellar ices.
Femtosecond Fourier transform two-dimensional vibrational-electronic (2D VE) spectroscopy is a recently developed third-order nonlinear spectroscopic technique to measure coupled electronic and vibrational motions in the condensed phase. The viability of femtosecond multidimensional spectroscopy as an analytical tool requires improvements in data collection and processing to enhance the signal-to-noise ratio and increase the amount of data collected in these experiments. Here a continuous fast scanning technique for the efficient collection of 2D VE spectroscopy is described. The resulting 2D VE spectroscopic method gains sensitivity by reducing the effect of laser drift, as well as decreasing the data collection time by a factor of 10 for acquiring spectra with a high signal-to-noise ratio within 3 dB of the more time intensive step scanning methods. This work opens the door to more comprehensive studies where 2D VE spectra can be collected as a function of external parameters such as temperature, pH, and polarization of the input electric fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.