Single-file diffusion (SFD) in finite open nanopores is characterized by nonzero spatially varying tracer diffusion coefficients within a generalized hydrodynamic description. This contrasts with infinite SFD systems where tracer diffusivity vanishes. In standard tracer counterpermeation (TCP) analysis, two reservoirs, each containing a different species, are connected to opposite ends of a finite pore. We implement an extended TCP analysis to allow the two reservoirs to contain slightly different mixtures of the two species. Then, determination of diffusion fluxes through the pore allows extraction of diffusion coefficients for near-constant partial concentrations of the two species. This analysis is applied for a lattice-gas model describing twocomponent SFD through a finite linear pore represented by a one-dimensional array of cells. Two types of particles, A and B, can hop only to adjacent empty cells with generally different rates, h A and h B . Particles are noninteracting other than exclusion of multiple cell occupancy. Results reveal generalized hydrodynamic tracer diffusion coefficients which adopt small values inversely proportional to pore length in the pore center, but which are strongly enhanced near pore openings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.