As the field of flash sintering expands, more diverse flash processes are emerging that exhibit complex mechanisms and kinetics. Reactive flash sintering studies have been performed using precursor oxides and have yet to explore redox reactions. We show that Mn2O3 transforms into Mn3O4 during stage III of flash sintering via a moving reaction front, propagating from an electrode if sufficient energy is supplied. The power density and sample temperature increases as the transformation progresses due to the lower resistivity of Mn2O3 vs Mn3O4, a secondary thermal runaway effect, further confirming the presence of a transformation front. Additionally, in many studies, the contact resistance is accounted for, but not utilized. The energy for the transformation may either be supplied by the contact resistance–induced Joule heating or the furnace. Room‐temperature impedance measurements demonstrate that Pt electrodes provide substantial contact resistance while Ag electrodes do not. The impedance study demonstrates that it is critical to select the appropriate electrode material to maximize or minimize contact resistance. The contact resistance may be used to create a hot spot and propagate a transformation front in any endothermic reduction reaction that occurs below 950°C in electronic conductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.