Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
A general method to synthesize substituted butenolides from hydroxymethylcyclopropenones is reported. Functionalized cyclopropenones undergo ring-opening reactions with catalytic amounts of phosphine, forming reactive ketene ylides. These intermediates can be trapped by pendant hydroxy groups to afford target butenolide scaffolds. The reaction proceeds efficiently in diverse solvents and with low catalyst loadings. Importantly, the cyclization is tolerant of a broad range of functional groups, yielding a variety of αand γ-substituted butenolides.
We report a new ligation of cyclopropeniminium ions with bioorthogonal phosphines. Cyclopropeniminium scaffolds are sufficiently stable in biological media and, unlike related isomers, react with functionalized phosphines via formal 1,2-addition to a π-system. The ligation can be performed in aqueous solution and is compatible with existing bioorthogonal transformations. Such mutually compatible reactions are useful for multicomponent labeling.
Bacteria have the natural ability to install protective post-synthetic modifications onto its bacterial peptidoglycan (PG), the coat woven into bacterial cell wall. Peptidoglycan O-acetyltransferase B (PatB) catalyzes the O-acetylation of PG in Gram (–) bacteria, which aids in bacterial survival, as it prevents autolysins such as lysozyme from cleaving the PG. We explored the mechanistic details of PatB’s acetylation function and determined that PatB has substrate specificity for bioorthgonal short N-acetyl cysteamine (SNAc) donors. A variety of functionality including azides and alkynes were installed on tri-N-acetylglucosamine (NAG)3, a PG mimic, as well as PG isolated from various Gram (+) and Gram (–) bacterial species. The bioorthogonal modifications protect the isolated PG against lysozyme degradation in vitro. We further demonstrate that this post-synthetic modification of PG can be extended to use click chemistry to fluorescently label the mature PG in whole bacterial cells of Bacillus subtilis. Modifying PG post-synthetically can aid in the development of antibiotics and immune modulators by expanding the understanding of how PG is processed by lytic enzymes.
Fluorogenic bioorthogonal reactions enable biomolecule visualization in real time. These reactions comprise reporters that “light up” upon reaction with complementary partners. While the spectrum of fluorogenic chemistries is expanding, few transformations are compatible with live cells due to cross-reactivities or insufficient signal turn-on. To address the need for more suitable chemistries for cellular imaging, we developed a fluorogenic reaction featuring cyclopropenone reporters and phosphines. The transformation involves regioselective activation and cyclization of cyclopropenones to form coumarin products. With optimal probes, the reaction provides >1600-fold signal turn-on, one of the highest fluorescence enhancements reported to date. The bioorthogonal motifs were evaluated in vitro and in cells. The reaction was also found to be compatible with other common fluorogenic transformations, enabling multicomponent, real-time imaging. Collectively, these data suggest that the cyclopropenone–phosphine reaction will bolster efforts to track biomolecule targets in their native settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.