The catalytic reduction of CO 2 to HCO 2 − requires a formal transfer of a hydride (two electrons, one proton). Synthetic approaches for inorganic molecular catalysts have exclusively relied on classic metal hydrides, where the proton and electrons originate from the metal (via heterolytic cleavage of an M−H bond). An analysis of the scaling relationships that exist in classic metal hydrides reveal that hydride donors sufficiently hydridic to perform CO 2 reduction are only accessible at very reducing electrochemical potentials, which is consistent with known synthetic electrocatalysts. By comparison, the formate dehydrogenase enzymes operate at relatively mild potentials. In contrast to reported synthetic catalysts, none of the major mechanistic proposals for hydride transfer in formate dehydrogenase proceed through a classic metal hydride. Instead, they invoke formal hydride transfer from an orthogonal or bidirectional mechanism, where the proton and electrons are not colocated. We discuss the thermodynamic advantages of this approach for favoring CO 2 reduction at mild potentials, along with guidelines for replicating this strategy in synthetic systems.
Multimolar CO2 concentrations are achieved in acetonitrile solutions containing supporting electrolyte at relatively mild CO2 pressures (<5 MPa) and ambient temperature. Such CO2‐rich, electrolyte‐containing solutions are termed as CO2‐eXpanded Electrolytes (CXEs) because significant volumetric expansion of the liquid phase accompanies CO2 dissolution. Cathodic polarization of a model polycrystalline gold electrode‐catalyst in CXE media enhances CO2 to CO conversion rates by up to an order of magnitude compared with those attainable at near‐ambient pressures, without loss of selectivity. The observed catalytic process intensification stems primarily from markedly increased CO2 availability. However, a non‐monotonic correlation between the dissolved CO2 concentration and catalytic activity is observed, with an optimum occurring at approximately 5 m CO2 concentration. At the highest applied CO2 pressures, catalysis is significantly attenuated despite higher CO2 concentrations and improved mass‐transport characteristics, attributed in part to increased solution resistance. These results reveal that pressure‐tunable CXE media can significantly intensify CO2 reduction rates over known electrocatalysts by alleviating substrate starvation, with CO2 pressure as a crucial variable for optimizing the efficiency of electrocatalytic CO2 conversion.
The catalytic reduction of CO<sub>2</sub> to HCO<sub>2</sub><sup>-</sup> requires a formal transfer of a hydride (two electrons, one proton). Synthetic approaches for inorganic molecular catalysts have exclusively relied on classic metal hydrides, where the proton and electrons originate from the metal (via heterolytic cleavage of an M-H bond). An analysis of the scaling relationships that exist in classic metal hydrides reveal that hydride donors sufficiently hydridic to perform CO<sub>2</sub> reduction are only accessible at very reducing electrochemical potentials, which is consistent with known synthetic electrocatalysts. By comparison, the formate dehydrogenase enzymes operate at relatively mild potentials. In contrast to reported synthetic catalysts, none of the major mechanistic proposals for hydride transfer in formate dehydrogenase proceed through a classic metal hydride. Instead, they invoke formal hydride transfer from an orthogonal or bi-directional mechanism, where the proton and electron are not co-located. We discuss the thermodynamic advantages of this approach for favoring CO<sub>2</sub> reduction at mild potentials, along with guidelines for replicating this strategy in synthetic systems.
Transition metal hydride complexes are key intermediates in a variety of catalytic processes. Transfer of a hydride, hydrogen atom, or proton is defined by the thermochemical parameters of hydricity, bond dissociation free energy (BDFE), and pK a, respectively. These values have been studied primarily in organic solvents to predict or understand reactivity. Despite growing interest in the development of aqueous metal hydride catalysis, BDFE measurements of transition metal hydrides in water are rare. Herein, we report two nickel hydride complexes with one or two cationic ligands that enable the measurement of BDFE values in both aqueous and organic solvents using their reduction potential and pK a values. The Ni(I/0) reduction potentials increase anodically as more charged groups are introduced into the ligand framework and are among the most positive values measured for Ni complexes. The complex with two cationic ligands, 2-Ni(II)–H, displays exceptional stability in water with no evidence of decomposition at pH 1 for at least 2 weeks. The BDFE of the nickel hydride bond in 2-Ni(II)–H was measured to be 53.6 kcal/mol in water and between 50.9 and 56.2 kcal/mol in acetonitrile, consistent with prior work that indicates minimal solvent dependence for BDFEs of O–H and N–H bonds. These results indicate that transition metal hydride BDFEs do not change drastically in water and inform future studies on highly cationic transition metal hydride complexes.
The incorporation of charged groups proximal to a redox active transition metal center can impact the local electric field, altering redox behavior and enhancing catalysis. Vanadyl salen (salen = N,N′-ethylenebis(salicylideneaminato)) complexes functionalized with a crown ether containing a nonredox active metal cation (V-Na, V-K, V-Ba, V-La, V-Ce, and V-Nd) were synthesized. The electrochemical behavior of this series of complexes was investigated by cyclic voltammetry in solvents with varying polarity and dielectric constant (ε) (acetonitrile, ε = 37.5; N,N-dimethylformamide, ε = 36.7; and dichloromethane, ε = 8.93). The vanadium(V/IV) reduction potential shifted anodically with increasing cation charge compared to a complex lacking a proximal cation (ΔE 1/2 > 900 mV in acetonitrile and >700 mV in dichloromethane). In contrast, the reduction potential for all vanadyl salen–crown complexes measured in N,N-dimethylformamide was insensitive to the magnitude of the cationic charge, regardless of the electrolyte or counteranion used. Titration studies of N,N-dimethylformamide into acetonitrile resulted in cathodic shifting of the vanadium(V/IV) reduction potential with increasing concentration of N,N-dimethylformamide. Binding constants of N,N-dimethylformamide (log(K DMF)) for the series of crown complexes show increased binding affinity in the order of V-La > V-Ba > V-K > (salen)V(O), indicating an enhancement of Lewis acid/base interaction with increasing cationic charge. The redox behavior of (salen)V(O) and (salen-OMe)V(O) (salen-OMe = N,N′-ethylenebis(3-methoxysalicylideneamine) was also investigated and compared to the crown-containing complexes. For (salen-OMe)V(O), a weak association of triflate salt at the vanadium(IV) oxidation state was observed through cyclic voltammetry titration experiments, and cation dissociation upon oxidation to vanadium(V) was identified. These studies demonstrate the noninnocent role of solvent coordination and cation/anion effects on redox behavior and, by extension, the local electric field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.