Purpose It is clinically challenging to integrate genomic-classifier results that report a numeric risk of recurrence into treatment recommendations for localized prostate cancer, which are founded in the framework of risk groups. We aimed to develop a novel clinical-genomic risk grouping system that can readily be incorporated into treatment guidelines for localized prostate cancer. Materials and Methods Two multicenter cohorts (n = 991) were used for training and validation of the clinical-genomic risk groups, and two additional cohorts (n = 5,937) were used for reclassification analyses. Competing risks analysis was used to estimate the risk of distant metastasis. Time-dependent c-indices were constructed to compare clinicopathologic risk models with the clinical-genomic risk groups. Results With a median follow-up of 8 years for patients in the training cohort, 10-year distant metastasis rates for National Comprehensive Cancer Network (NCCN) low, favorable-intermediate, unfavorable-intermediate, and high-risk were 7.3%, 9.2%, 38.0%, and 39.5%, respectively. In contrast, the three-tier clinical-genomic risk groups had 10-year distant metastasis rates of 3.5%, 29.4%, and 54.6%, for low-, intermediate-, and high-risk, respectively, which were consistent in the validation cohort (0%, 25.9%, and 55.2%, respectively). C-indices for the clinical-genomic risk grouping system (0.84; 95% CI, 0.61 to 0.93) were improved over NCCN (0.73; 95% CI, 0.60 to 0.86) and Cancer of the Prostate Risk Assessment (0.74; 95% CI, 0.65 to 0.84), and 30% of patients using NCCN low/intermediate/high would be reclassified by the new three-tier system and 67% of patients would be reclassified from NCCN six-tier (very-low- to very-high-risk) by the new six-tier system. Conclusion A commercially available genomic classifier in combination with standard clinicopathologic variables can generate a simple-to-use clinical-genomic risk grouping that more accurately identifies patients at low, intermediate, and high risk for metastasis and can be easily incorporated into current guidelines to better risk-stratify patients.
Biopsy Decipher predicted metastasis and prostate cancer-specific mortality risk from diagnostic biopsy specimens.
We studied the genomic characteristics of tumors from men diagnosed with low-risk prostate cancer. We found three main subtypes of prostate cancer with divergent tumor biology, similar to what has previously been found in women with breast cancer. In addition, we found that genomic risk scores were associated with worse pathology findings and prostate-specific antigen recurrence after surgery. These results suggest even greater genomic diversity among low-risk patients than has previously been documented with more limited signatures.
Background:We examined the ability of a biopsy-based 22-marker genomic classifier (GC) to predict for distant metastases after radiation and a median of 6 months of androgen deprivation therapy (ADT).Methods:We studied 100 patients with intermediate-risk (55%) and high-risk (45%) prostate cancer who received definitive radiation plus a median of 6 months of ADT (range 3–39 months) from 2001–2013 at a single center and had available biopsy tissue. Six to ten 4 micron sections of the needle biopsy core with the highest Gleason score and percentage of tumor involvement were macrodissected for RNA extraction. GC scores (range, 0.04–0.92) were determined. The primary end point of the study was time to distant metastasis. Median follow-up was 5.1 years. There were 18 metastases during the study period.Results:On univariable analysis (UVA), each 0.1 unit increase in GC score was significantly associated with time to distant metastasis (hazard ratio: 1.40 (1.10–1.84), P=0.006) and remained significant after adjusting for clinical variables on multivariable analysis (MVA) (adjusted hazard ratio: 1.36 (1.04–1.83), P=0.024). The c-index for 5-year distant metastasis was 0.45 (95% confidence interval: 0.27–0.64) for Cancer of the Prostate Risk Assessment score, 0.63 (0.40–0.78) for National Comprehensive Cancer Network (NCCN) risk groups, and 0.76 (0.57–0.89) for the GC score. Using pre-specified GC risk categories, the cumulative incidence of metastasis for GC>0.6 reached 20% at 5 years after radiation (P=0.02).Conclusions:We believe this is the first demonstration of the ability of the biopsy-based GC score to predict for distant metastases after definitive radiation and ADT for intermediate- and high-risk prostate cancer. Patients with the highest GC risk (GC>0.6) had high rates of metastasis despite multi-modal therapy suggesting that they could potentially be candidates for treatment intensification and/or enrollment in clinical trials of novel therapy.
BackgroundProstate cancer antigen 3 (PCA3) is a prostate cancer diagnostic biomarker that has been clinically validated. The limitations of the diagnostic role of PCA3 in initial biopsy and the prognostic role are not well established. Here, we elucidate the limitations of tissue PCA3 to predict high grade tumors in initial biopsy.ResultsPCA3 has a bimodal distribution in both biopsy and radical prostatectomy (RP) tissues, where low PCA3 expression was significantly associated with high grade disease (p<0.001). PCA3 had a poor performance of predicting high grade disease in initial biopsy (GS≥8) with 55% sensitivity and high false negative rates; 42% of high Gleason (≥8) samples had low PCA3. In RP, low PCA3 is associated with adverse pathological features, clinical recurrence outcome and greater probability of metastatic progression (p<0.001).Materials and MethodsA total of 1,694 expression profiles from biopsy and 10,382 from RP patients with high risk tumors were obtained from the Decipher Genomic Resource Information Database (GRIDTM)prostate cancer database. The primary clinical endpoint was distant metastasis-free survival for RP and high Gleason grade for biopsy. Logistic regression analyses and Cox proportional hazards models were used to evaluate the association of PCA3 with clinical variables and risk of metastasis.ConclusionsThere is high prevalence of high grade tumors with low PCA3 expression in the biopsy setting. Therefore, urologists should be warned that using PCA3 as stand-alone test may lead to high rate of under-diagnosis of high grade disease in initial biopsy setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.