Honokiol (poly-phenolic lignan from Magnolia grandiflora) is a Sirtuin-3 (SIRT3) activator which exhibit antioxidant activity and augment mitochondrial functions in several experimental models. Modern evidence suggests the critical role of SIRT3 in the progression of several metabolic and neurodegenerative diseases. Amyloid beta (Aβ), the precursor to extracellular senile plaques, accumulates in the brains of patients with Alzheimer’s disease (AD) and is related to the development of cognitive impairment and neuronal cell death. Aβ is generated from amyloid-β precursor protein (APP) through sequential cleavages, first by β-secretase and then by γ-secretase. Drugs modulating this pathway are believed to be one of the most promising strategies for AD treatment. In the present study, we found that Honokiol significantly enhanced SIRT3 expression, reduced reactive oxygen species generation and lipid peroxidation, enhanced antioxidant activities, and mitochondrial function thereby reducing Aβ and sAPPβ levels in Chinese Hamster Ovarian (CHO) cells (carrying the amyloid precursor protein-APP and Presenilin PS1 mutation). Mechanistic studies revealed that Honokiol affects neither protein levels of APP nor α-secretase activity. In contrast, Honokiol increased the expression of AMPK, CREB, and PGC-1α, thereby inhibiting β-secretase activity leading to reduced Aβ levels. These results suggest that Honokiol is an activator of SIRT3 capable of improving antioxidant activity, mitochondrial energy regulation, while decreasing Aβ, thereby indicating it to be a lead compound for AD drug development.
Dental pulp tissue exposed to mechanical trauma or cariogenic process results in root canal and/or periapical infections, and conventionally treated with root canal procedures. The more recent regenerative endodontic procedure intends to achieve effective root canal disinfection and adequate pulp–dentin tissue regeneration; however, numerous limitations are reported. Because tooth is composed of vital soft pulp enclosed by the mineralized hard tissue in a highly organized structure, complete pulp–dentin tissue regeneration has been challenging to achieve. In consideration of the limitations and unique dental anatomy, it is important to understand the healing and repair processes through inflammatory-proliferative-remodeling phase transformations of pulp–dentin tissue. Upon cause by infectious and mechanical stimuli, the innate defense mechanism is initiated by resident pulp cells including immune cells through chemical signaling. After the expansion of infection and damage to resident pulp–dentin cells, consequent chemical signaling induces pluripotent mesenchymal stem cells (MSCs) to migrate to the injury site to perform the tissue regeneration process. Additionally, innovative biomaterials are necessary to facilitate the immune response and pulp–dentin tissue regeneration roles of MSCs. This review highlights current approaches of pulp–dentin tissue healing process and suggests potential biomedical perspective of the pulp–dentin tissue regeneration.
Atherosclerosis is the primary cause of hardening and narrowing arteries, leading to cardiovascular disease accounting for the high mortality in the United States. For developing effective treatments for atherosclerosis, considerable efforts have been devoted to developing in vitro models. Compared to animal models, in vitro models can provide great opportunities to obtain data more efficiently, economically. Therefore, this review discusses the recent progress in in vitro models for atherosclerosis studies, including traditional two-dimensional (2D) systems cultured on the tissue culture plate, 2D cell sheets, and recently emerged microfluidic chip models with 2D culture. In addition, advanced in vitro three-dimensional models such as spheroids, cell-laden hydrogel constructs, tissue-engineered blood vessels, and vessel-on-a-chip will also be covered. Moreover, the functions of these models are also summarized along with model discussion. Lastly, the future perspectives of this field are discussed.
Candida species are common global opportunistic pathogens that could repeatedly and chronically cause oral mucosa infection and create an inflammatory environment, leading to organ dysfunction. Oral Candida infections may cause temporary or permanent damage to salivary glands, resulting in the destruction of acinar cells and the formation of scar tissue. Restricted function of the salivary glands leads to discomfort and diseases of the oral mucosa, such as dry mouth and associated infection. This narrative review attempts to summarize the anatomy and function of salivary glands, the associations between Candida and saliva, the effects of Candida infection on salivary glands, and the treatment strategies. Overall, clinicians should proactively manage Candida infections by educating patients on oral hygiene management for vulnerable populations, conducting frequent checks for a timely diagnosis, and providing an effective treatment plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.