The brain is one of the most studied and highly complex systems in the biological world. While much research has concentrated on studying the brain directly, our focus is the structure of the brain itself: at its core an interconnected network of nodes (neurons). A better understanding of the structural connectivity of the brain should elucidate some of its functional properties. In this paper we analyze the connectome of the nematode Caenorhabditis elegans. Consisting of only 302 neurons, it is one of the better-understood neural networks. Using a Laplacian Matrix of the 279-neuron “giant component” of the network, we use an eigenvalue counting function to look for fractal-like self similarity. This matrix representation is also used to plot visualizations of the neural network in eigenfunction coordinates. Small-world properties of the system are examined, including average path length and clustering coefficient. We test for localization of eigenfunctions, using graph energy and spacial variance on these functions. To better understand results, all calculations are also performed on random networks, branching trees, and known fractals, as well as fractals which have been “rewired” to have small-world properties. We propose algorithms for generating Laplacian matrices of each of these graphs.
Abstract:We compare two mathematical theories that address duality between cycles and vertex-cuts of graphs in geometric settings. First, we propose a rigorous definition of a new type of graph, vector graphs. The special case of R 2 -vector graphs matches the intuitive notion of drawing graphs with edges taken as vectors. This leads to a discussion of Kirchhoff graphs, as originally presented by Fehribach, which can be defined independent of any matrix relations. In particular, we present simple cases in which vector graphs are guaranteed to be Kirchhoff or non-Kirchhoff. Next, we review Maxwell's method of drawing reciprocal figures as he presented in 1864, using modern mathematical language. We then demonstrate cases in which R 2 -vector graphs defined from Maxwell reciprocals are "dual" Kirchhoff graphs. Given an example in which Maxwell's theories are not sufficient to define vector graphs, we begin to explore other methods of developing dual Kirchhoff graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.