A computational study of a metamaterial (MTM)-on-glass composite is presented for the purpose of increasing the energy efficiency of buildings in seasonal or cold climates. A full-spectrum analysis yields the ability to predict optical and thermal transmission properties from ultraviolet through far-infrared frequencies. An opportunity to increase efficiency beyond that of commercial low-emissivity glass is identified through a MTM implementation of Ag and dielectric thin-film structures. Three-dimensional finite difference time-domain (FDTD) simulations predict selective nonlinear absorption of near-infrared energy, providing the means to capture a substantial portion of solar energy during cold periods, while retaining high visible transmission and high reflectivity in far-infrared frequencies. The effect of various configuration parameters is quantified, with prediction of the net sustainability advantage. MTM window glass technology can be realized as a modification to commercial low-emissivity windows through the application of nanomanufactured films, creating the opportunity for both new and after-market sustainable construction.
A computational analysis of a metamaterial (MTM) window design is presented for the purpose of increasing the energy efficiency of buildings in seasonal or cold climates. Commercial low-emissivity windows use nanometer-scale Ag films to reflect infrared energy, while retaining most transmission of optical wavelengths for functionality. An opportunity exists to further increase efficiency through a variable emissivity implementation of Ag thin-film structures. 3-D finite-difference time-domain simulations predict nonlinear absorption of near-infrared energy, providing the means to capture a substantial portion of solar energy during cold periods. The effect of various configuration parameters is quantified, with prediction of the net sustainability advantage. MTM window glass technology can be realized as a modification to current, commercial low-emissivity windows through the application of nanomanufactured films, creating the opportunity for both new and after-market sustainable construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.