The authors found that Long COVID symptoms in a post-acute cohort were associated with serological evidence suggesting recent EBV reactivation and pre-existing HIV infection when adjusted for participant factors, sample timing, comorbid conditions and prior hospitalization, whereas underlying CMV infection was associated with decreased odds of Long COVID.
Background:Limited data are available on the long-term clinical and immunologic consequences of SARS-CoV-2 infection in people with HIV (PWH).Methods:We measured SARS-CoV-2-specific humoral and cellular responses in people with and without HIV recovering from COVID-19 (n = 39 and n = 43, respectively) using binding antibody, surrogate virus neutralization, intracellular cytokine staining, and inflammatory marker assays. We identified individuals experiencing postacute sequelae of SARS-CoV-2 infection (PASC) and evaluated immunologic parameters. We used linear regression and generalized linear models to examine differences by HIV status in the magnitude of inflammatory and virus-specific antibody and T-cell responses, as well as differences in the prevalence of PASC.Results:Among PWH, we found broadly similar SARS-CoV-2-specific antibody and T-cell responses as compared with a well matched group of HIV-negative individuals. PWH had 70% lower relative levels of SARS-CoV-2-specific memory CD8+ T cells (P = 0.007) and 53% higher relative levels of PD-1+ SARS-CoV-2-specific CD4+ T cells (P = 0.007). Higher CD4+/CD8+ ratio was associated with lower PD-1 expression on SARS-CoV-2-specific CD8+ T cells (0.34-fold effect, P = 0.02). HIV status was strongly associated with PASC (odds ratio 4.01, P = 0.008), and levels of certain inflammatory markers (IL-6, TNF-alpha, and IP-10) were associated with persistent symptoms.Conclusion:We identified potentially important differences in SARS-CoV-2-specific CD4+ and CD8+ T cells in PWH and HIV-negative participants that might have implications for long-term immunity conferred by natural infection. HIV status strongly predicted the presence of PASC. Larger and more detailed studies of PASC in PWH are urgently needed.
Epstein-Barr virus (EBV) reactivation has been proposed as a driver of Long COVID (LC), but studies in well-characterized post-acute COVID-19 cohorts of individuals with and without Long COVID symptoms over a time course consistent with current case definitions of LC are limited. In a cohort of 294 hundred adults with a history of SARS-CoV-2 infection, we observed that LC symptoms such as fatigue and neurocognitive dysfunction at a median of 4 months following initial diagnosis were associated with serological evidence of recent EBV reactivation (early antigen-D IgG positivity or nuclear antigen IgG levels >600 U/mL), but not with ongoing EBV viremia.. Importantly, Long COVID was also observed in the small proportion without evidence of prior or recent EBV infection, suggesting that EBV reactivation is not a prerequisite for this condition. Overall, these findings expand our knowledge of the relationships between EBV reactivation and LC and suggest that further assessment during the acute phase of COVID-19 is warranted.
Background: Limited data are available on the long-term clinical and immunologic consequences of SARS-CoV-2 infection in people with HIV (PWH). Methods: We measured SARS-CoV-2 specific humoral and cellular immune responses in people with and without HIV recovering from COVID-19 (n=39 and n=43, respectively) using binding antibody, surrogate virus neutralization, intracellular cytokine staining, and inflammatory marker assays. We identified individuals experiencing symptomatic post-acute sequelae of SARS-CoV-2 infection (PASC) and evaluated immunologic parameters. We used linear regression and generalized linear models to examine differences by HIV status in the magnitude of inflammatory and virus-specific antibody and T cell responses, as well as differences in the prevalence of PASC. Results: Among PWH, we found broadly similar SARS-CoV-2-specific antibody and T cell immune responses as compared with a well-matched group of HIV-negative individuals. PWH had 70% lower relative levels of SARS-CoV-2 specific memory CD8+ T cells (p=0.007) and 53% higher relative levels of PD-1+ SARS-CoV-2 specific CD4+ T cells (p=0.007). Higher CD4/CD8 ratio was associated with lower PD-1 expression on SARS-CoV-2 specific CD8+ T cells (0.34-fold effect, p=0.02). HIV status was strongly associated with PASC (odds ratio 4.01, p=0.008), and the proportion of PD-1+ CD4+ T cells and levels of certain inflammatory markers (IL-6, TNF-alpha, and IP-10) were associated with persistent symptoms. Conclusions: We identified potentially important differences in SARS-CoV-2-specific CD4+ and CD8+ T cells that might have implications for long-term immunity conferred by natural infection. HIV status strongly predicted the presence of PASC. Larger and more detailed studies of PASC in PWH are urgently needed.
Gene-modification therapies are at the forefront of HIV-1 cure strategies. Chimeric antigen receptor (CAR)-T cells pose a potential approach to target infected cells during antiretroviral therapy or following analytical treatment interruption (ATI). However, there are technical challenges in the quantification of HIV-1-infected and CAR-T cells in the setting of lentiviral CAR gene delivery and also in the identification of cells expressing target antigens. First, there is a lack of validated techniques to identify and characterize cells expressing the hypervariable HIV gp120 in both ART-suppressed and viremic individuals. Second, close sequence homology between lentiviral-based CAR-T gene modification vectors and conserved regions of HIV-1 creates quantification challenges of HIV-1 and lentiviral vector levels. Consideration needs to be taken into standardizing HIV-1 DNA/RNA assays in the setting of CAR-T cell and other lentiviral vector-based therapies to avoid these confounding interactions. Lastly, with the introduction of HIV-1 resistance genes in CAR-T cells, there is a need for assays with single-cell resolution to determine the competence of the gene inserts to prevent CAR-T cells from becoming infected in vivo. As novel therapies continue to arise in the HIV-1 cure field, resolving these challenges in CAR-T-cell therapy will be crucial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.