Locomotion provides superb examples of cooperation among neuromuscular systems, environmental reaction forces, and sensory feedback. As part of a program to understand the neuromechanics of locomotion, here we construct a model of anguilliform (eel-like) swimming in slender fishes. Building on a continuum mechanical representation of the body as an viscoelastic rod, actuated by a traveling wave of preferred curvature and subject to hydrodynamic reaction forces, we incorporate a new version of a calcium release and muscle force model, fitted to data from the lamprey Ichthyomyzon unicuspis, that interactively generates the curvature wave. We use the model to investigate the source of the difference in speeds observed between electromyographic waves of muscle activation and mechanical waves of body curvature, concluding that it is due to a combination of passive viscoelastic and geometric properties of the body and active muscle properties. Moreover, we find that nonlinear force dependence on muscle length and shortening velocity may reduce the work done by the swimming muscles in steady swimming.
We develop a model for anguilliform (eel-like) swimming as an elastic rod actuated via time-dependent intrinsic curvature and subject to hydrodynamic drag forces, the latter as proposed by Taylor (in Proc Roy Proc Lond A 214:158-183, 1952). We employ a eometrically exact theory and discretize the resulting nonlinear partial differential evolution both to perform numerical simulations, and to compare with previous models consisting of chains of rigid links or masses connected by springs, dampers, and prescribed force generators representing muscles. We show that muscle activations driven by motoneuronal spike trains via calcium dynamics produce intrinsic curvatures corresponding to near-sinusoidal body shapes in longitudinally-uniform rods, but that passive elasticity causes Taylor's assumption of prescribed shape to fail, leading to time-periodic motions and lower speeds than those predicted Taylor (in Proc Roy Proc Lond A 214:158-183, 1952). We investigate the effects of bending stiffness, body geometry, and activation patterns on swimming speed, turning behavior, and acceleration to steady swimming. We show that laterally-uniform activation yields stable straight swimming and laterally differential activation levels lead to stable turns, and we argue that tapered bodies with reduced caudal (tail-end) activation (to produce uniform intrinsic curvature) swim faster than ones with uniform activation.
The crack of a whip is produced by a shock wave created by the supersonic motion of the tip of the whip in the air. A simple dynamical model for the propagation and acceleration of waves in the motion of whips is presented. The respective contributions of tension, tapering, and boundary conditions in the acceleration of an initial impulse are studied theoretically and numerically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.