Layered semiconductors based on transition-metal chalcogenides usually cross from indirect bandgap in the bulk limit over to direct bandgap in the quantum (2D) limit. Such a crossover can be achieved by peeling off a multilayer sample to a single layer. For exploration of physical behavior and device applications, it is much desired to reversibly modulate such crossover in a multilayer sample. Here we demonstrate that, in a few-layer sample where the indirect bandgap and direct bandgap are nearly degenerate, the temperature rise can effectively drive the system toward the 2D limit by thermally decoupling neighboring layers via interlayer thermal expansion. Such a situation is realized in few-layer MoSe 2 , which shows stark contrast from the well-explored MoS 2 where the indirect and direct bandgaps are far from degenerate. Photoluminescence of few-layer MoSe 2 is much enhanced with the temperature rise, much like the way that the photoluminescence is enhanced due to the bandgap crossover going from the bulk to the quantum limit, offering potential applications involving external modulation of optical properties in 2D semiconductors. The direct bandgap of MoSe 2 , identified at 1.55 eV, may also promise applications in energy conversion involving solar spectrum, as it is close to the optimal bandgap value of single-junction solar cells and photoelechemical devices. KEYWORDS: 2D-Semiconductors, MoSe 2 , MoS 2 , photoluminescence, bandgap, temperature dependence T wo-dimensional (2D) materials have attracted much interest mainly owing to their exotic physical properties that are strikingly different from their three-dimensional (bulk) counterparts. Even though graphene, the most famous member of the 2D material family, possesses extraordinary properties 1 and is readily integrated in various applications, 2−4 the lack of a native bandgap in graphene has led to a broad search for other 2D semiconducting materials. More recently, the transitionmetal dichalcogenide (TMD) semiconductor MoS 2 has been focused on and has shown great potential in the field; singlelayer MoS 2 has been used as an integral part of transistors, 5−8 sensors, 9 and magnetic materials. 10 However, beyond MoS 2 , other layered TMDs offer a large variety of 2D materials with distinct properties.In this work we studied, for the first time, single-layer MoSe 2 mechanically exfoliated onto SiO 2 /Si. 11 Single-layer MoSe 2 displays good thermal stability with a 1.55 eV direct bandgap as determined from photoluminescence (PL) measurements. The PL peak intensity is enhanced dramatically from few-layer to single-layer as a result of the crossover from indirect bandgap in the bulk limit to direct bandgap in the quantum (2D) limit, similar to the behavior of MoS 2 . 12−14 More interestingly, we find that few-layer MoSe 2 flakes posssess a nearly degenerate indirect and direct bandgap, and an increase in temperature can effectively push the system toward the quasi-2D limit by thermally reducing the coupling between the layers. This response in f...
In the monolayer limit, transition metal dichalcogenides become direct-bandgap, light-emitting semiconductors. The quantum yield of light emission is low and extremely sensitive to the substrate used, while the underlying physics remains elusive. In this work, we report over 100 times modulation of light emission efficiency of these two-dimensional semiconductors by physical adsorption of O2 and/or H2O molecules, while inert gases do not cause such effect. The O2 and/or H2O pressure acts quantitatively as an instantaneously reversible "molecular gating" force, providing orders of magnitude broader control of carrier density and light emission than conventional electric field gating. Physi-sorbed O2 and/or H2O molecules electronically deplete n-type materials such as MoS2 and MoSe2, which weakens electrostatic screening that would otherwise destabilize excitons, leading to the drastic enhancement in photoluminescence. In p-type materials such as WSe2, the molecular physisorption results in the opposite effect. Unique and universal in two-dimensional semiconductors, the effect offers a new mechanism for modulating electronic interactions and implementing optical devices.
The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.