Range anxiety is a significant contributor to consumer reticence when purchasing electric vehicles (EVs). To alleviate this concern, new commercial EVs readily achieve over 200 miles of range, as found by the United States Environmental Protection Agency (EPA). However, this range, measured under idealized conditions, is often not encountered in real-world conditions. As a result, this effort describes the simplest model that incorporates all key factors that affect the range of an EV. Calibration of the model to EPA tests found an average deviation of 0.45 and 0.57 miles for highway and city ranges, respectively, among seven commercial EVs. Subsequent predictions found significant losses based on the impact of road grade, wind, and vehicle speed over a Kansas interstate highway. For cabin conditioning, up to 57.8% and 37.5% losses in range were found when simulating vehicles at 20 °F and 95 °F, respectively. Simulated aging of the vehicle battery pack showed range losses up to 53.1% at 100,000 miles. Model extensions to rain and snow illustrated corresponding losses based on the level of precipitation on the road. All model outcomes were translated into an Excel spreadsheet that can be used to predict the range of a generic EV over Kansas-centric roads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.