Medical imaging has become a central component of patient care to ensure early and accurate diagnosis. Unfortunately, many imaging modalities use ionizing radiation to generate images. Ionizing radiation even in low doses can cause direct DNA damage and generate reactive oxygen species and free radicals, leading to DNA, protein, and lipid membrane damage. This cell damage can lead to apoptosis, necrosis, teratogenesis, or carcinogenesis. As many as 2% of cancers (and an associated 15,000 deaths annually) can be linked to computed tomography exposure alone. Radioprotective agents have been investigated using various models including cells, animals, and recently humans. The data suggest that radioprotective agents working through a variety of mechanisms have the potential to decrease free radical damage produced by ionizing radiation. Radioprotective agents may be useful as an adjunct to medical imaging to reduced patient morbidity and mortality due to ionizing radiation exposure. Some radioprotective agents can be found in high quantities in antioxidant rich foods, suggesting that a specific diet recommendation could be beneficial in radioprotection.
The spleen is the most commonly injured organ in blunt abdominal trauma. Unstable patients undergo laparotomy and splenectomy. Stable patients with lower grade injuries are treated conservatively; those stable patients with moderate to severe splenic injuries (grade III-V) benefit from endovascular splenic artery embolization. Two widely used embolization approaches are proximal and distal splenic artery embolization. Proximal splenic artery embolization decreases the perfusion pressure in the spleen but allows for viability of the spleen to be maintained via collateral pathways. Distal embolization can be used in cases of focal injury. In this article we review relevant literature on splenic embolization indication, and technique, comparing and contrasting proximal and distal embolization. Additionally, we review relevant anatomy and discuss collateral perfusion pathways following proximal embolization. Finally, we review potential complications of splenic artery embolization.
Background: The ideal central venous catheter (CVC) tip position placement is controversial, and CVCs do not remain in a fixed position after placement. This study evaluates both patient and procedural factors which may influence CVC tip migration and subsequent catheter dysfunction. Materials and Methods: This study evaluates CVC placements at a single institution. Patient age, gender, body mass index (BMI), catheter laterality, CVC type and indication for central venous access were recorded. Catheter tip location relative to the carina was measured at time of placement and removal utilizing supine fluoroscopic imaging. Patients’ electronic medical records were reviewed for evidence of catheter dysfunction. Statistical analysis was performed utilizing odds ratios and two tailed Student’s t-test. Results: 177 patients were included (101 female; mean age 55; mean BMI 29.2). Catheter types included 122 ports, 50 tunneled large bore central venous catheters (≥9 French), and 5 tunneled small bore central venous catheters (<9 French). 127 were right sided catheters, and 50 were left sided. Left sided CVCs had a mean cranial tip migration of 3.2 cm (standard deviation ±2.9 cm) compared to 0.8 cm (standard deviation ±1.9 cm) for right sided catheters (p = 0.000008). Catheters that migrated cranially by >2 cm had more than 7× greater risk of dysfunction compared to catheters that migrated ≤2 cm (odds ratio of 7.2; p = 0.0001). Left sided CVCs were significantly more likely to have >2 cm of cranial migration (odds ratio 6.9, 95% CI 3.4–14.2, p < 0.0001) and had a higher rate of dysfunction, likely due to this cranial migration (32% vs. 4.7%; p = 0.00001). Gender and BMI were not found to be associated with catheter dysfunction or an increased odds ratio of >2 cm cranial migration. Conclusions: Left-sided CVCs migrate an average of 2.4 cm cranially more than right-sided catheters. Additionally, when migration occurs, left-sided catheters are more likely to be dysfunctional. These suggest that lower initial placement may be beneficial in left-sided catheters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.