The thermoelectric properties of bulk polycrystalline Sr0.5Ba0.5Nb2O6 (SBN50) fabricated via solution combustion synthesis (SCS) and reduced at temperatures of 900°C–1150°C were explored. The Seebeck coefficient (S) of all samples increased over the entire range of testing temperatures; a peak S value of −281 μV/K was obtained at 930 K for the sample reduced at 900°C. A metal‐insulator transition was observed in the electrical conductivity (σ) of samples reduced at 1000°C–1150°C, whereas only semiconducting electrical behavior was observed for the sample reduced at 900°C. An optimal balance between S and σ was achieved for the pellet reduced at 1000°C, which exhibited a maximum power factor of 1.78 μW/cm·K2 at 930 K. Over a temperature range of 300–930 K, the thermal conductivity (κ) of as‐processed and reduced (1000°C) SBN50 was found to be 1.03–1.4 and 1.46–1.84 W/m·K, respectively. A maximum figure of merit (ZT) of 0.09 was obtained at 930 K for the 1000°C‐reduced sample. X‐ray photoelectron spectroscopy revealed that the Nb2+ peak intensity increased at higher reduction temperatures, which could possibly lead to a distortion of NbO6 octahedra and a decrease in the Seebeck coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.