9-Deaza-2'-deoxyguanosine (CdG) is a C-nucleoside and an analogue of the abundant promutagen 8-oxo-2'-deoxyguanosine (OdG). Like 2'-deoxyguanosine (dG), CdG should form a stable base pair with dC, but similar to OdG, CdG contains an N7-hydrogen that should allow it to also form a relatively stable base pair with dA. In order to further investigate the base pairing of CdG, it was incorporated into DNA and paired with either dC or dA. Melting studies revealed CdG:dC base pairs are less stable than dG:dC base pairs, while CdG:dA base pairs are less stable than OdG:dA base pairs. In order to gain a deeper understanding of these results, quantum studies on model structures of nucleoside monomers and base pairs were performed, the results of which indicate that (i) CdG:dC base pairs are likely destabilized relative to dG:dC as a result of structural constraints imposed by the C-nucleotide character of CdG, and (ii) CdG:dA base pairs may be less stable than OdG:dA base pairs, at least in part, because of a third long-range interaction that is possible in OdG:dA but not in CdG:dA.
Ryanodine receptors (RyRs) are large conductance intracellular channels controlling intracellular calcium homeostasis in myocytes, neurons, and other cell types. Loss of RyR's constitutive cytoplasmic partner FKBP results in channel sensitization, dominant subconductance states, and increased cytoplasmic Ca 2+. FKBP12 binds to RyR1's cytoplasmic assembly 130 Å away from the ion gate at four equivalent sites in the RyR1 tetramer. To understand how FKBP12 binding alters RyR1's channel properties, we studied the 3D structure of RyR1 alone in the closed conformation in the context of the open and closed conformations of FKBP12-bound RyR1. We analyzed the metrics of conformational changes of existing structures, the structure of the ion gate, and carried out multivariate statistical analysis of thousands of individual cryoEM RyR1 particles. We find that under closed state conditions, in the presence of FKBP12, the cytoplasmic domain of RyR1 adopts an upward conformation, whereas absence of FKBP12 results in a relaxed conformation, while the ion gate remains closed. The relaxed conformation is intermediate between the RyR1-FKBP12 complex closed (upward) and open (downward) conformations. The closed-relaxed conformation of RyR1 appears to be consistent with a lower energy barrier separating the closed and open states of RyR1-FKBP12, and suggests that FKBP12 plays an important role by restricting conformations within RyR1's conformational landscape.
Drugs that inhibit the dopamine (DA) transporter (DAT) include both therapeutic agents and abused drugs. Recent studies identified a novel series of putative allosteric DAT inhibitors, but the in vivo effects of these compounds are unknown. This study examined the abuse-related behavioral and neurochemical effects produced in rats by SRI-31142 [2-(7-methylimidazo[1,2-a]pyridin-6-yl)-N-(2-phenyl-2-(pyridin-4-yl)ethyl)quinazolin-4-amine], one compound from this series. In behavioral studies, intracranial self-stimulation (ICSS) was used to compare the effects produced by SRI-31142, the abused and nonselective DAT inhibitor cocaine, and the selective DAT inhibitor GBR-12935 [1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine]. In neurochemical studies, in vivo microdialysis was used to compare the effects of SRI-31142 and cocaine on levels of DA and serotonin in nucleus accumbens (NAc). The effects of SRI-31142 in combination with cocaine were also examined in both procedures. In contrast to cocaine and GBR-12935, SRI-31142 failed to produce abuse-related increases in ICSS or NAc DA; instead, SRI-31142 only decreased ICSS and NAc DA at a dose that was also sufficient to block cocaine-induced increases in ICSS and NAc DA. Pharmacokinetic studies suggested low but adequate brain penetration of SRI-31142, in vitro binding studies failed to identify likely non-DAT targets, and in vitro functional assays failed to confirm DA uptake inhibition in an assay of DAT-mediated fluorescent signals in live cells. These results indicate that SRI-31142 does not produce cocaine-like abuse-related effects in rats. SRI-31142 may have utility to block cocaine effects and may warrant further study as a candidate pharmacotherapy; however, the role of DAT in mediating these effects is unclear, and side effects may be a limiting factor.
Background-The appearance of stimulant-class new psychoactive substances (NPS) is a frequent and significant problem in our society. Cathinone variants are often sold illegally as 3,4methylenedioxymethamphetamine ("ecstasy") or disguised for legal sale using misleading names such as "bath salts" and carry the risk of promoting disruptive mental states, addiction, and fatal overdose. The principal targets of these recreational drugs are monoamine transporters expressed in catecholaminergic and serotonergic neurons. Some transporter ligands can be transported into cells, where they can promote a massive release of neurotransmitters through reverse transport, and others can block uptake. A ligand's dopamine vs. serotonin transporter selectivity, potency, and activity as a substrate or blocker can help elucidate the abuse liability and subjective effects of a drug.Objectives-Here we describe the discovery, development, and validation of an emerging methodology for compound activity assessment at monoamine transporters. Key findings-Substrates generate inward electrical currents through transporters, and can depolarize the plasma membrane, whereas blockers work as a "cork in a bottle" and f unction as antagonists. Voltage-gated Ca 2+ channels were co-expressed with monoamine transporters in cultured cells and used to measure fluctuations of the membrane electrical potential. In this system, substrates of monoamine transporters produce reliable dose-dependent Ca 2+ signals while blockers hinder them. Discussion-This system constitutes a novel use of voltage-gated Ca 2+ channels as biosensors for the purpose of characterizing ligand activity at monoamine transporters using fluorimetry. This approach in combination with in vivo evaluations of drugs' abuse-related effects is a powerful strategy for anticipating potential stimulant-class NPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.