SummaryWe present an exceptional case of a patient with high-grade serous ovarian cancer, treated with multiple chemotherapy regimens, who exhibited regression of some metastatic lesions with concomitant progression of other lesions during a treatment-free period. Using immunogenomic approaches, we found that progressing metastases were characterized by immune cell exclusion, whereas regressing and stable metastases were infiltrated by CD8+ and CD4+ T cells and exhibited oligoclonal expansion of specific T cell subsets. We also detected CD8+ T cell reactivity against predicted neoepitopes after isolation of cells from a blood sample taken almost 3 years after the tumors were resected. These findings suggest that multiple distinct tumor immune microenvironments co-exist within a single individual and may explain in part the heterogeneous fates of metastatic lesions often observed in the clinic post-therapy.Video Abstract
In metastatic cancer, the role of heterogeneity at the tumor-immune microenvironment, its molecular underpinnings and clinical relevance remain largely unexplored. To understand tumor-immune dynamics at baseline and upon chemotherapy treatment, we performed unbiased pathway and cell type-specific immunogenomics analysis of treatment-naive (38 5 samples from 8 patients) and paired chemotherapy treated (80 paired samples from 40 patients) high-grade serous ovarian cancer (HGSOC) samples. Whole transcriptome analysis and imagebased quantification of T cells from treatment-naive tumors revealed ubiquitous variability in immune signaling and distinct immune microenvironments co-existing within the same individuals and within tumor deposits at diagnosis. To systematically explore cell type composition of the tumor microenvironment using bulk mRNA, we derived consensus immune and stromal cell gene signatures by intersecting state-of-the-art deconvolution methods, providing improved accuracy and sensitivity when compared to HGSOC immunostaining and leukocyte methylation data sets. Cell-type deconvolution and pathway analyses revealed that Myc and Wnt signaling associate with immune cell exclusion in untreated HGSOC. To evaluate the effect of chemotherapy on the intrinsic tumor-immune heterogeneity, we compared sitematched and site-unmatched tumors before and after neoadjuvant chemotherapy.Transcriptomic and T-cell receptor sequencing analyses showed that site-matched samples had increased cytotoxic immune activation and oligoclonal expansion of T cells after chemotherapy, which was not seen in site-unmatched samples where heterogeneity could not be accounted for. These results demonstrate that the tumor-immune interface in advanced HGSOC is intrinsically heterogeneous, and thus requires site-specific analysis to reliably unmask the impact of therapy on the tumor-immune microenvironment..
Anti-viral immunity presents a major hurdle for systemically administered oncolytic viruses (OV). Intratumoral OV therapy has a potential to overcome this problem through activation of anti-tumor immune response, with local and abscopal effects. However, the effects of anti-viral immunity in such a setting are still not well defined. Using Newcastle Disease Virus (NDV) as a model, we explore the effects of pre-existing anti-viral immunity on therapeutic efficacy in syngeneic mouse tumor models. Unexpectedly, we find that while pre-existing immunity to NDV limits its replication in tumors, tumor clearance, abscopal anti-tumor immune effects, and survival are not compromised and, on the contrary, are superior in NDV-immunized mice. These findings demonstrate that pre-existing immunity to NDV may increase its therapeutic efficacy through potentiation of systemic anti-tumor immunity, which provides clinical rationale for repeated therapeutic dosing and prompts investigation of such effects with other OVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.