We formulate and prove a quantum Shannon-McMillan theorem. The theorem demonstrates the significance of the von Neumann entropy for translation invariant ergodic quantum spin systems on Z ν -lattices: the entropy gives the logarithm of the essential number of eigenvectors of the system on large boxes. The one-dimensional case covers quantum information sources and is basic for coding theorems.
We present a quantum extension of a version of Sanov's theorem focussing on a hypothesis testing aspect of the theorem: There exists a sequence of typical subspaces for a given set Ψ of stationary quantum product states asymptotically separating them from another fixed sta-*
We classify when local instability of orbits of closeby points can occur for billiards in two dimensional polygons, for billiards inside three dimensional polyhedra and for geodesic flows on surfaces of three dimensional polyhedra. We sharpen a theorem of Boldrighini, Keane and Marchetti. We show that polygonal and polyhedral billiards have zero topological entropy. We also prove that billiards in polygons are positive expansive when restricted to the set of non-periodic points. The methods used are elementary geometry and symbolic dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.