Carbanions of alkanesulfonyl halides and esters react with nonenolizable carbonyl compounds to give olefins. Mechanistic studies reveal that initial aldol-type addition of the carbanions is followed by cyclization-fragmentation to alkenes, and the leaving group on the sulfonyl moiety (RSOX) controls carbanion stability and rate of the olefin formation.
Carbanions of sulfonyl halides and activated sulfonates add to carbonyl compounds, and so‐formed aldol‐type adducts spontaneously fragment into olefins. This transformation mimics the one‐pot Julia olefination with (hetero)aryl sulfones, but the mechanism of fragmentation involves a four‐membered intermediate, typical for reactivity of phosphorus reagents. Moreover, in contrast to the reactions of sulfones, sulfonates of fluorinated alcohols (TFE and HFI) produce byproducts that are easily removed during workup. In our report, we focus on reactions of unstabilized and semistabilized carbanion precursors: alkylsulfonates, and allyl‐ and benzylsulfonates, respectively. In particular for semistabilized systems, olefins were synthesized as predominant E isomers in good yields. The presented studies reveal that optimal reaction conditions, including the type of base and alcohol groups of the sulfonates, are different depending on stabilization of the carbanion precursors and structure of the carbonyl substrates. The practical synthetic guide is supplemented with a discussion of the mechanism, based on reactivity studies of intermediates and identification of side‐products.
Abstract:The structure of the chelating benzylidene ligand offers the unique ability to control the initiation of HoveydaGrubbs metathesis catalysts. Apart from steric and electronic effects acting on the step involving opening of the chelate ring, changes related to the following ligand-exchange process may also play a critical role. Our mechanistic model reveals that ligands substituted at the 6-position of the benzylidene ring enter the metathesis cycle in a nonoptimal chelating conforma-
Alkylation of nitroarenes via Vicarious Nucleophilic Substitution (VNS) was tested experimentally and modelled with DFT calculations. Mechanistic studies reveal intrinsic differences between reactions of archetypal carbanion precursor PhSO2CH2Cl, and alkyl phenyl sulfones, in which benzenesulfinate acts as a leaving group. Accordingly, for the latter precursors steric hindrance develops at the β‐elimination step, that raises energy barrier and results in the formation of byproducts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.