Atopy, specific IgE sensitization, and bronchial hyperresponsiveness (BHR) were examined in a cohort of 769 apprentices starting career programs in animal health or veterinary medicine (Group 1), pastry making (Group 2), and dental hygiene (Group 3). The hypothesis were that: (1) a proportion of subjects can be "sensitized" although no significant specific occupational exposure has occurred; and (2) there is a relationship between baseline specific sensitization to work-related antigens and host characteristics. Skin tests were administered using 11 common inhalants and specific allergens, including six laboratory animal extracts, three cereal antigens, alpha-amylase, and latex. Methacholine challenge tests were performed. The prevalence of atopy was 54.4% in Group 1, 58.1% in Group 2, and 52.5% in Group 3. Skin reactivity to work-specific proteins was as follows: laboratory animal proteins, 13.8% in Group 1, 14.0% in Group 2, and 15.6% in Group 3. No subject was sensitized to alpha-amylase, whereas 1.2% in Group 1, 5% in Group 2, and 4.1% in Group 3 were sensitized to flour. Five subjects reacted to latex. BHR (PC20 < or = 8 mg/ml) was present in 17.6%, 21.2%, and 14.8% of subjects in Groups 1, 2, and 3, respectively. Specific sensitization was associated with positive skin reactions to common allergens, work-related symptoms, and BHR. These results suggest that students starting career programs with exposure to high-molecular-weight allergens have a low but substantial frequency of specific sensitization to work-related allergens that is related to atopy and BHR.
Asthma is a chronic airway disorder characterized by recurrent attacks of breathlessness and wheezing, affecting 300 million people around the world (available at: www.who.int). To date, genetic factors associated with asthma susceptibility have been unable to explain the full etiology of asthma. Recent studies have demonstrated that the epigenetic disruption of gene expression plays an equally important role in the development of asthma through interaction with our environment. We sensitized 6-week-old C57BL/6J mice with house-dust-mite (HDM) extracts intraperitoneally followed by 5 weeks of exposure to HDM challenges (three times a week) intratracheally. HDM-exposed mice showed an increase in airway hyper-responsiveness (AHR) and inflammation together with structural remodeling of the airways. We applied methylated DNA immunoprecipitation-next generation sequencing (MeDIP-seq) for profiling of DNA methylation changes in the lungs in response to HDM. We observed about 20 million reads by a single-run of massive parallel sequencing. We performed bioinformatics and pathway analysis on the raw sequencing data to identify differentially methylated candidate genes in HDM-exposed mice. Specifically, we have revealed that the transforming growth factor beta signaling pathway is epigenetically modulated by chronic exposure to HDM. Here, we demonstrated that a specific allergen may play a role in AHR through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in airway inflammation and remodeling. Our findings provide new insights into the potential mechanisms by which environmental allergens induce allergic asthma and such insights may assist in the development of novel preventive and therapeutic options for this debilitative disease.
Beyond the genome, epigenetics has become a promising approach in understanding the interactions between the gene and the environment. Epigenetic regulation includes DNA methylation, histone modifications, and non-coding RNAs. Among these, DNA methylation, which is the addition of a methyl group to the fifth base of cytosine to produce 5-methylcytosine (5-mC), is most commonly studied. Epigenetic regulation has changed given the discovery of 5-hydroxymethylcytosine (5-hmC), considered the “sixth base”, and the nature of TET proteins to catalyze 5-mC oxidation to 5-hmC. 5-hydroxymethylation has been proposed to be a stable intermediate between methylation and demethylation and has raised questions about the functions of 5-hmC in gene regulation in cells, tissues, and organs in response to environmental exposure. Herein, we have provided an introduction to the chemistry of 5-hydroxymethylation, and the techniques for detection of 5-hydroxymethylation. In addition, we have reviewed current reports describing how 5-hmC responds to environmental factors, leading to the development of disease. And finally, we have discussed the potential use of 5-hmC in the study of disease development. All in all, it is our goal to provide innovative and convincing epigenetic studies for understanding the etiology of environmentally-related human disease, and translate these epigenetic findings into lifestyle recommendations and clinical practices to prevent and cure disease.
Growing evidence suggests that maternal exposures to endocrine disrupting chemicals during pregnancy may lead to poor pregnancy outcomes and increased fetal susceptibility to adult diseases. Polybrominated diphenyl ethers (PBDEs), which are ubiquitously used flame-retardants, could leach into the environment; and become persistent organic pollutants via bioaccumulation. In the United States, blood PBDE levels in adults range from 30–100 ng/g- lipid but the alarming health concern revolves around children who have reported blood PBDE levels 3 to 9-fold higher than adults. PBDEs disrupt endocrine, immune, reproductive and nervous systems. However, the mechanism underlying its adverse health effect is not fully understood. Epigenetics is a possible biological mechanism underlying maternal exposure-child health outcomes by regulating gene expression without changes in the DNA sequence. We sought to examine the relationship between maternal exposure to environmental PBDEs and promoter methylation of a proinflammatory gene, tumor necrosis factor alpha (TNFα). We measured the maternal blood PBDE levels and cord blood TNFα promoter methylation levels on 46 paired samples of maternal and cord blood from the Boston Birth Cohort (BBC). We showed that decreased cord blood TNFα methylation associated with high maternal PBDE47 exposure. CpG site-specific methylation showed significantly hypomethylation in the girl whose mother has a high blood PBDE47 level. Consistently, decreased TNFα methylation associated with an increase in TNFα protein level in cord blood. In conclusion, our finding provided evidence that in utero exposure to PBDEs may epigenetically reprogram the offspring’s immunological response through promoter methylation of a proinflammatory gene.
Environmental exposures have been linked to increased asthma risk, particularly during pregnancy and in early life. Here we use a mouse model of allergic lung disease to examine the effects of pre- and perinatal house dust mite (HDM) allergen exposure on offspring phenotypic and transcriptional outcomes in three generations. We show that maternal HDM exposure (F0) acts synergistically with adult HDM exposure, leading to enhanced airway hyperresponsiveness (AHR) and lung inflammation when compared to mice exposed solely in adulthood. Additionally, a subset of F1 males were not challenged in adulthood, and used to generate F2 progeny, which was then used to generate F3 progeny. Upon adult challenge to HDM, F2, and F3 males generated from the maternal HDM (F0) exposure lineage displayed increased airway reactivity and inflammation when compared to mice exposed solely in adulthood. These findings indicate that maternal allergen exposure is capable of enhancing either susceptibly to or severity of allergic airway disease. To examine the role of epigenetic inheritance of asthma susceptibility induced by maternal HDM exposure, we utilized a genome-wide MeDIP-seq and hMeDIP-seq analysis to identify genes differentially methylated (DMG) and hydroxymethylated (DHG), and their association with the enhanced AHR. In addition, we validated the relationship between DNA methylation and mRNA expression of the DMGs and DHGs in the male sub-generations (F1-F3). We found the expression of Kchn1, Nron, and Spag17 to be differentially hydroxymethylated and upregulated in the F1 exposed to HDM both in early life and in adulthood when compared to F1 mice exposed solely in adulthood. Kcnh1 remained upregulated in the F2 and F3 from the maternal HDM (F0) exposure lineage, when compared to F1 mice exposed solely in adulthood. In summary, we demonstrated that maternal HDM exposure in early life can alter the gene expression and phenotype of offspring upon adult HDM exposure, resulting in more severe disease. These effects persist at least two generations past the initial insult, transmitted along the paternal line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.