Cancer has become a major problem worldwide due to its increasing incidence and mortality rates. Both the 37kDa/67kDa laminin receptor (LRP/LR) and telomerase are overexpressed in cancer cells. LRP/LR enhances the invasiveness of cancer cells thereby promoting metastasis, supporting angiogenesis and hampering apoptosis. An essential component of telomerase, hTERT is overexpressed in 85–90% of most cancers. hTERT expression and increased telomerase activity are associated with tumor progression. As LRP/LR and hTERT both play a role in cancer progression, we investigated a possible correlation between LRP/LR and telomerase. LRP/LR and hTERT co-localized in the perinuclear compartment of tumorigenic breast cancer (MDA_MB231) cells and non-tumorigenic human embryonic kidney (HEK293) cells. FLAG® Co-immunoprecipitation assays confirmed an interaction between LRP/LR and hTERT. In addition, flow cytometry revealed that both cell lines displayed high cell surface and intracellular LRP/LR and hTERT levels. Knock-down of LRP/LR by RNAi technology significantly reduced telomerase activity. These results suggest for the first time a novel function of LRP/LR in contributing to telomerase activity. siRNAs targeting LRP/LR may act as a potential alternative therapeutic tool for cancer treatment by (i) blocking metastasis (ii) promoting angiogenesis (iii) inducing apoptosis and (iv) impeding telomerase activity.
One of the core regulators of cellular aging are telomeres, repetitive DNA sequences at the ends of chromosomes that are maintained by the ribonucleoprotein DNA polymerase complex, telomerase. Recently, we demonstrated that knockdown of the 37kDa/ 67kDa laminin receptor (LRP/LR), a protein that promotes cell viability in tumorigenic and normal cells, reduces telomerase activity. We therefore hypothesized that upregulating LRP/LR might increase telomerase activity and impede aging. Here we show that overexpression of LRP::FLAG resulted in significantly elevated hTERT levels, telomerase activity and telomere length, respectively, with concomitantly reduced levels of senescence markers. These data suggest a novel function of LRP/LR hampering the onset of senescence through elevating hTERT levels and telomerase activity, respectively. LRP::FLAG might therefore act as a potential novel anti-aging drug through the impediment of the cellular aging process.
Alzheimer’s disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta (Aβ) plaque and neurofibrillary tangle formation. We have shown in vitro, that knock-down and blockade of the 37 kDa/67 kDa Laminin Receptor (LRP/LR) resulted in reduced Aβ induced cytotoxicity and Aβ accumulation. In order to test the effect of blocking LRP/LR on Aβ formation and AD associated symptoms, AD transgenic mice received the anti-LRP/LR specific antibody, IgG1-iS18 through intranasal administration. We show that this treatment resulted in an improvement in memory, and decreased Aβ plaque formation. Moreover, a significant decrease in Aβ42 protein expression with a concomitant increase in amyloid precursor protein (APP) and telomerase reverse transcriptase (mTERT) levels was observed. These data recommend IgG1-iS18 as a potentially powerful therapeutic antibody for AD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.