Granular jamming is a popular soft robotics technology that has seen recent widespread applications including industrial gripping, surgical robotics and haptics. However, to date the field has not fully exploited the fundamental science of the jamming phase transition, which has been rigorously studied in the field of statistical and condensed matter physics. This work introduces vibration as a means to improve the properties of granular jamming grippers through vibratory fluidisation and the exploitation of resonant modes within the granular material. We show that vibration in soft jamming grippers can improve holding strength, reduce the downwards force needed for the gripping action, and lead to a simplified setup where the second air pump, generally used for unjamming, could be removed. In a series of studies, we show that frequency and amplitude of the waveforms are key determinants to performance, and that jamming performance is also dependent on temporal properties of the induced waveform. We hope to encourage further study in transitioning fundamental jamming mechanisms into a soft robotics context to improve performance and increase diversity of applications for granular jamming grippers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.