Two kinds of Bi 0.4 Sb 1.6 Te 3 powder with different particle and grain sizes were fabricated by high-energy ball milling. Powder mixtures with varied weight ratios were consolidated by vacuum hot pressing (HP) to produce nano/ microstructured composites of identical chemical composition. From measurements of the Seebeck coefficient, electrical resistivity, and thermal conductivity of these composites, a figure of merit (ZT) value of up to 1.19 was achieved at 373 K for the sample containing 40% nanograin powder. This ZT value is higher than that of monolithic nanostructured Bi 0.4 Sb 1.6 Te 3 . It is further noted that the ZT value of this sample in the temperature range of 450 K to 575 K is in the range of 0.7 to 1.1. Such ZT characteristics are suitable for power generation applications as no other material with a similar high ZT value in this temperature range has been observed until now. The achieved high ZT value can probably be attributed to the unique nano/ microstructure, in which the dispersed nanograin powder increases the number of phonon scattering sites, which in turn results in a decrease of the thermal conductivity while simultaneously increasing the electrical conductivity, owing to the existence of the microsized powder that can provide a fast carrier transportation network. These results indicate that the nano/microstructured Bi 0.4 Sb 1.6 Te 3 alloy can serve as a high-performance material for application in thermoelectric devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.