The modular synthesis of 7 libraries containing 51 self-assembling amphiphilic Janus dendrimers with the monosaccharides D-mannose and D-galactose and the disaccharide D-lactose in their hydrophilic part is reported. These unprecedented sugar-containing dendrimers are named amphiphilic Janus glycodendrimers. Their self-assembly by simple injection of THF or ethanol solution into water or buffer and by hydration was analyzed by a combination of methods including dynamic light scattering, confocal microscopy, cryogenic transmission electron microscopy, Fourier transform analysis, and micropipet-aspiration experiments to assess mechanical properties. These libraries revealed a diversity of hard and soft assemblies, including unilamellar spherical, polygonal, and tubular vesicles denoted glycodendrimersomes, aggregates of Janus glycodendrimers and rodlike micelles named glycodendrimer aggregates and glycodendrimermicelles, cubosomes denoted glycodendrimercubosomes, and solid lamellae. These assemblies are stable over time in water and in buffer, exhibit narrow molecular-weight distribution, and display dimensions that are programmable by the concentration of the solution from which they are injected. This study elaborated the molecular principles leading to single-type soft glycodendrimersomes assembled from amphiphilic Janus glycodendrimers. The multivalency of glycodendrimersomes with different sizes and their ligand bioactivity were demonstrated by selective agglutination with a diversity of sugar-binding protein receptors such as the plant lectins concanavalin A and the highly toxic mistletoe Viscum album L. agglutinin, the bacterial lectin PA-IL from Pseudomonas aeruginosa, and, of special biomedical relevance, human adhesion/growth-regulatory galectin-3 and galectin-4. These results demonstrated the candidacy of glycodendrimersomes as new mimics of biological membranes with programmable glycan ligand presentations, as supramolecular lectin blockers, vaccines, and targeted delivery devices.
Pentaerythritol and bis-pentaerythritol scaffolds were used for the preparation of first generation glycodendrimers bearing aryl alpha-D-mannopyranoside residues assembled using single-step Sonogashira and click chemistry. The carbohydrate precursors were built with either para-iodophenyl, propargyl, or 2-azidoethyl aglycones whereas the pentaerythritol moieties were built with terminal azide or propargyl groups, respectively. Cross-linking abilities of this series of glycodendrimers were first evaluated with the lectin from Canavalia ensiformis (Concanavalin A). Surface plasmon resonance measurements showed these two families of mannosylated clusters as the best ligands known to date toward Escherichia coli K12 FimH with subnanomolar affinities. Tetramer 4 had a K(d) of 0.45 nM. These clusters were 1000 times more potent than mannose for their capacity to inhibit the binding of E. coli to erythrocytes in vitro.
Three small families of hydrolytically stable thioaryl glycosides were prepared as inhibitors of the LecA (PA-IL) virulence factor corresponding to the carbohydrate binding lectin from the bacterial pathogen Pseudomonas aeruginosa. The monosaccharidic arylthio β-d-galactopyranosides served as a common template for the major series that was also substituted at the O-3 position. Arylthio disaccharides from lactose and from melibiose constituted the other two series members. In spite of the fact that the natural ligand for LecA is a glycolipid of the globotriaosylceramide having an α-d-galactopyranoside epitope, this study illustrated that the β-d-galactopyranoside configuration having a hydrophobic aglycon could override the requirement toward the anomeric configuration of the natural sugar. The enzyme linked lectin assay together with isothermal titration microcalorimetry established that naphthyl 1-thio-β-d-galactopyranoside () gave the best inhibition with an IC50 twenty-three times better than that of the reference methyl α-d-galactopyranoside. In addition it showed a KD of 6.3 μM which was ten times better than that of the reference compound. The X-ray crystal structure of LecA with was also obtained.
dStreptococcus suis serotype 2 is an encapsulated bacterium and one of the most important bacterial pathogens in the porcine industry. Despite decades of research for an efficient vaccine, none is currently available. Based on the success achieved with other encapsulated pathogens, a glycoconjugate vaccine strategy was selected to elicit opsonizing anti-capsular polysaccharide (anti-CPS) IgG antibodies. In this work, glycoconjugate prototypes were prepared by coupling S. suis type 2 CPS to tetanus toxoid, and the immunological features of the postconjugation preparations were evaluated in vivo. In mice, experiments evaluating three different adjuvants showed that CpG oligodeoxyribonucleotide (ODN) induces very low levels of anti-CPS IgM antibodies, while the emulsifying adjuvants Stimune and TiterMax Gold both induced high levels of IgGs and IgM. Dose-response trials comparing free CPS with the conjugate vaccine showed that free CPS is nonimmunogenic independently of the dose used, while 25 g of the conjugate preparation was optimal in inducing high levels of anti-CPS IgGs postboost. With an opsonophagocytosis assay using murine whole blood, sera from immunized mice showed functional activity. Finally, the conjugate vaccine showed immunogenicity and induced protection in a swine challenge model. When conjugated and administered with emulsifying adjuvants, S. suis type 2 CPS is able to induce potent IgM and isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and protection against a lethal challenge in vivo, all features of a T cell-dependent response. This study represents a proof of concept for the potential of glycoconjugate vaccines in veterinary medicine applications against invasive bacterial infections.
A new family of glycodendrimer scaffolds containing 12 and 18 peripheral alpha-d-mannopyranosidic units has been synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloadditions using sulfurated dendritic scaffolds bearing alkyne functionalities and novel TRIS derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.