A promising solution to address the challenges in plastics sustainability is to replace current polymers with chemically recyclable ones that can depolymerise into their constituent monomers for circular use of materials. Despite the progress, few depolymerisable polymers exhibit the excellent thermal stability and strong mechanical properties of traditional polymers. Here we report a series of chemically recyclable polymers that show excellent thermal stability (decomposition temperature > 370 ºC) and tunable mechanical properties. The polymers are formed via ring-opening metathesis polymerisation of cyclooctene with a trans-cyclobutane installed at the 5,6-positions. The additional ring converts the nondepolymerisable polycyclooctene into a depolymerisable polymer by reducing the ring strain energy in the monomer (from 8.2 kcal/mol in unsubstituted cyclooctene to 4.9 kcal/mol in the fused ring). The fusedring monomer enables a broad scope of functionalities to be incorporated, providing access to chemically recyclable elastomers and plastics that show promise as next-generation sustainable materials. Main TextSynthetic polymers, including synthetic rubber and synthetic plastics, have been used in nearly every aspect of our daily lives. The dominance of synthetic polymers is largely driven by their excellent stability and processability as well as their versatile mechanical properties. However, due to their high durability, waste materials composed of these polymers have accumulated in the ocean and have caused serious concerns for marine ecosystems 1 . In addition, since 90% of these polymers are derived from nite fossil feedstocks, the production of these materials is unsustainable if they cannot be recycled and reused 2 .
Though numerous applications require degradable polymers, there are surprisingly few polymer systems that combine superior stability and controllable degradability. Particularly, the degradability of a conventional degradable polymer is typically enabled by cleavable groups on the backbone, which can be attacked by stimuli in ambient conditions, causing undesirable material deterioration. Here we report a general strategy to overcome this issue: "locking" the degradability during handling and use of the polymers and "unlocking" it when degradation is needed. This strategy is demonstrated with a cyclobutane-fused lactone (CBL) polymer. The cyclobutane keeps polymer backbone intact under conditions that hydrolyze the lactone and allows the ester group to be recovered when undesirable hydrolysis occurs. When backbone degradation is needed, the degradability can be unlocked by mechanochemical activation that converts the polyCBL into a linear polyester. The rare combination of two intrinsically conflicting properties, i.e., backbone stability and accessible degradability, can make this polymer a potential option for new sustainable materials.
While depolymerizable polymers have been intensely pursued as ap otential solution to address the challenges in polymer sustainability,m ost depolymerization systems are characterized by alow driving force in polymerization, which poses difficulties for accessing diverse functionalities and architectures of polymers.H ere,w ea ddress this challenge by using ac yclooctene-based depolymerization system, in which the cis-to-trans alkene isomerization significantly increases the ring strain energy to enable living ring-opening metathesis polymerization at monomer concentrations ! 0.025 M. An additional trans-cyclobutane fused at the 5,6-position of the cyclooctene reduces the ring strain energy of cyclooctene, enabling the corresponding polymers to depolymerizeinto the cis-cyclooctene monomers.T he use of excess triphenylphosphine was found to be essential to suppress secondary metathesis and depolymerization. The high-driving-force living polymerization of the trans-cyclobutane fused trans-cyclooctene system holds promise for developing chemically recyclable polymers of awide variety of polymer architectures.
The polymerization of perfluorocarbons and fluorohydrocarbons was investigated by using both continuous and pulsed rf discharge (100 μsec on and 900 μsec off). Plasma polymerization of perfluorocarbons is generally slower than that of hydrocarbons, which seems to be due to the absence of contribution of fluorine detachment to the plasma polymerization. Presence of multiple bond(s) or cyclic structure in a monomer is necessary to obtain high enough polymerization; however, the plasma polymerization mechanism postulated to plasma polymerization of hydrocarbons is still valid to these monomers. Cyclic structure is very effective to enhance the plasma polymerization capability of perfluorocarbons. Saturated straight‐chain perfluorocarbons do not polymerize well in plasma, but the grafting of fluorine‐containing functions on the surface of polymeric substrate can be achieved by the plasma of these compounds. The effect of pulse on the plasma polymerization was found to be similar to that found for hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.