We propose a novel formulation of the "effectiveness problem" in communications, put forth by Shannon and Weaver in their seminal work [2], by considering multiple agents communicating over a noisy channel in order to achieve better coordination and cooperation in a multi-agent reinforcement learning (MARL) framework. Specifically, we consider a multi-agent partially observable Markov decision process (MA-POMDP), in which the agents, in addition to interacting with the environment can also communicate with each other over a noisy communication channel. The noisy communication channel is considered explicitly as part of the dynamics of the environment and the message each agent sends is part of the action that the agent can take. As a result, the agents learn not only to collaborate with each other but also to communicate "effectively" over a noisy channel. This framework generalizes both the traditional communication problem, where the main goal is to convey a message reliably over a noisy channel, and the "learning to communicate" framework that has received recent attention in the MARL literature, where the underlying communication channels are assumed to be error-free. Weshow via examples that the joint policy learned using the proposed framework is superior to that where the communication is considered separately from the underlying MA-POMDP. This is a very powerful framework, which has many real world applications, from autonomous vehicle planning to drone swarm control, and opens up the rich toolbox of deep reinforcement learning for the design of multi-user communication systems.
A hybrid digital-analog wireless image transmission scheme, called SparseCast, is introduced, which provides graceful degradation with channel quality. SparseCast achieves improved end-to-end reconstruction quality while reducing the bandwidth requirement by exploiting frequency domain sparsity through compressed sensing. The proposed algorithm produces a linear relationship between the channel signal-to-noise ratio (CSNR) and peak signal-to-noise ratio (PSNR), without requiring the channel state knowledge at the transmitter. This is particularly attractive when transmitting to multiple receivers or over unknown timevarying channels, as the receiver PSNR depends on the experienced channel quality, and is not bottlenecked by the worst channel. SparseCast is benchmarked against two alternative algorithms: SoftCast and BCS-SPL. Our findings show that the proposed algorithm outperforms SoftCast by approximately 3.5 dB and BCS-SPL by 15.2 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.