This study aims to investigate the complexity of the developing fetal cortical surface based on the notion of fractal dimension (FD). Forty-four fetal MR images were selected at 22-36 weeks of gestational age (GA) and distributed between two groups: 32 normal fetal brains (excluding twins) and 12 abnormal fetal brains, including twins, mild ventricular dilata-ROC tion, Cornelia de Lange syndrome (small brain), and cortical dysplasia (developmental delay). We adopted the commonly used box-counting (BC) method to estimate the FD of the developing fetal cortical surface. Results from normal fetal brains show that the increase of cortical complexity is highly correlated with fetal developing weeks of GA. In addition, after 28 weeks of GA, the value of FD increases more rapidly because of the faster development of convolved folds. In comparison with results from the normal fetal group, the abnormal fetal brains were examined and the results show that: (1) mild ventricular dilatation has no significant developing difference compared with normal fetal brains; (2) twins had lower FD than that of normal fetal brains, which may be a delay of 2-3 weeks;(3) the case of cortical dysplasia also had low FD, indicating that developing delay may mean less cortical complexity. The results of the normal group are in good agreement with fetal brain development and demonstrate the effectiveness of FD as a promising means for the quantification of complexity of the fetal cortical surface.
The fetal cortical complexity is a significant quantification for assessing the development of fetal brain. This study attempts to quantify the development of fetal cortical complexity using the concept of fractal dimension (FD) analysis. Thirty-two fetal MR images were selected from Taipei Veterans General Hospital at 27-37 weeks of gestational age (GA). To investigate the FD of fetal cortical complexity, the entropy based information fractal dimension method (FD EBI ), which is modified from Box-Counting method, was adopted and extended from 2D to 3D. The FD results from overall whole fetal brains show that the increase of cortical complexity is highly correlated with the gestational age of the fetus. Moreover, the FD values of right hemispheric brain are larger than those of left hemispheric brain, show that the development of right hemispheric fetal cortical complexity earlier than the left. These results are in good agreement with normal fetal brain development and suggest that the FD is an effective means for the quantification of fetal cortical complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.