A fractal multilayer structure made of two dielectric materials can exhibit photonic bandgap (PBG). In this work, with the use of this PBG, we study the transmission properties of periodic triadic Cantor set structures. The results indicate that the structure can be used to design multichannel filters with channel number equal to N-1 for a given number of periods, N. In addition, the channel frequencies can be designed at will. The considered structure provides another new type of design for a tunable multichannel filter.
The ferroelectric material KTaO3 (KTO) has a very high refractive index, which is advantageous to the photonic crystal (PC) design. KTO polycrystalline crystal has a high extinction coefficient. In this work, we perform a theoretical study of the transmission properties of a PC bandpass filter made of polycrystalline KTO at terahertz (THz) frequencies. Our results show that the defect modes of usual PC narrowband filters no longer exist because of the existence of the high loss. We provide a new PC structure for the high-extinction materials and show that it has defect modes in its transmittance spectra, providing a possible bandpass filter design in the THz region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.