Background: The number of breast cancer patients has increased each year, and the demand for breast cancer detection has become quite large. There are many common breast cancer diagnostic tools. The latest automated whole breast ultrasound (ABUS) technology can obtain a complete breast tissue structure, which improves breast cancer detection technology. However, due to the large amount of ABUS image data, manual interpretation is time-consuming and labor-intensive. If there are lesions in multiple images, there may be some omissions. In addition, if further volume information or the three-dimensional shape of the lesion is needed for therapy, it is necessary to manually segment each lesion, which is inefficient for diagnosis.Therefore, automatic lesion segmentation for ABUS is an important issue for guiding therapy.Methods: Due to the amount of speckle noise in an ultrasonic image and the low contrast of the lesion boundary, it is quite difficult to automatically segment the lesion. To address the above challenges, this study proposes an automated lesion segmentation algorithm. The architecture of the proposed algorithm can be divided into four parts: (I) volume of interest selection, (II) preprocessing, (III) segmentation, and (IV) visualization. A volume of interest (VOI) is automatically selected first via a three-dimensional level-set, and then the method uses anisotropic diffusion to address the speckled noise and intensity inhomogeneity correction to eliminate shadowing artifacts before the adaptive distance regularization level set method (DRLSE) conducts segmentation. Finally, the two-dimensional segmented images are reconstructed for visualization in the three-dimensional space.Results: The ground truth is delineated by two radiologists with more than 10 years of experience in breast sonography. In this study, three performance assessments are carried out to evaluate the effectiveness of the proposed algorithm. The first assessment is the similarity measurement. The second assessment is the comparison of the results of the proposed algorithm and the Chan-Vese level set method. The third assessment is the volume estimation of phantom cases. In this study, in the 2D validation of the first assessment, the area Dice similarity coefficients of the real cases named cases A, real cases B and phantoms are 0.84±0.02, 0.86±0.03 and 0.92±0.02, respectively. The overlap fraction (OF) and overlap value (OV) of the real cases A are 0.84±0.06 and 0.78±0.04, real case B are 0.91±0.04 and 0.82±0.05, respectively. The overlap fraction (OF) and overlap value (OV) of the phantoms are 0.95±0.02 and 0.92±0.03, respectively. In the 3D validation, the volume Dice similarity coefficients of the real cases A, real cases B and phantoms are 0.85±0.02, 0.89±0.04 and 0.94±0.02, respectively. The overlap fraction (OF) and overlap value (OV) of the real cases A are 0.82±0.06 and 0.79±0.04, real cases B are 0.92±0.04 and 0.85±0.07, respectively. The overlap fraction (OF) and overlap value (OV) of the phantoms are 0.95±0.01 and 0.93±0.0...
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to diagnose breast disease. Obtaining anatomical information from DCE-MRI requires the skin be manually removed so that blood vessels and tumors can be clearly observed by physicians and radiologists; this requires considerable manpower and time. We develop an automated skin segmentation algorithm where the surface skin is removed rapidly and correctly. The rough skin area is segmented by the active contour model, and analyzed in segments according to the continuity of the skin thickness for accuracy. Blood vessels and mammary glands are retained, which remedies the defect of removing some blood vessels in active contours. After three-dimensional imaging, the DCE-MRIs without the skin can be used to see internal anatomical information for clinical applications. The research showed the Dice’s coefficients of the 3D reconstructed images using the proposed algorithm and the active contour model for removing skins are 93.2% and 61.4%, respectively. The time performance of segmenting skins automatically is about 165 times faster than manually. The texture information of the tumors position with/without the skin is compared by the paired t-test yielded all p < 0.05, which suggested the proposed algorithm may enhance observability of tumors at the significance level of 0.05.
No abstract
For use in lighting applications, white organic light-emitting devices (WOLEDs) must operate at higher biases to ensure an ample flux. However, stressed operation voltages often result in poor performance and limited device lifetime. This could be addressed by modifying the inherent optical properties of OLEDs. This study proposes a gradient refractive index (GRIN) substrate to adjust the ratio of the light-waveguided modes as well as the radiation mode. An embedded nanocomposite film consisting of titanium dioxide (TiO2) nanoparticles (NPs) was inserted between ITO and glass to create an internal light-extraction structure (IES). The high refractive index of TiO2 is essential for increasing the refractive index of the photoresist film and thus diminishing the total internal reflection between the interfaces. In addition, the silicon dioxide NPs mixed poly(dimethylsiloxane) was used to form an external light-extraction structure (EES). The refractive indices of the IES and EES were adjusted to form a GRIN substrate. Compared with a control device, this sophisticated substrate produced a 1.6 fold efficiency improvement. Furthermore, the experiment results indicates that the size of NPs in the nanocomposite layer affects the efficiency enhancement of OLEDs with different emission colors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.