The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of millions of people around the world. Severe vitamin D deficiency can increase the risk of death in people with COVID-19. There is growing evidence that acute kidney injury (AKI) is common in COVID-19 patients and is associated with poorer clinical outcomes. The kidney effects of SARS-CoV-2 are directly mediated by angiotensin 2-converting enzyme (ACE2) receptors. AKI is also caused by indirect causes such as the hypercoagulable state and microvascular thrombosis. The increased release of soluble urokinase-type plasminogen activator receptor (suPAR) from immature myeloid cells reduces plasminogen activation by the competitive inhibition of urokinase-type plasminogen activator, which results in low plasmin levels and a fibrinolytic state in COVID-19. Frequent hypercoagulability in critically ill patients with COVID-19 may exacerbate the severity of thrombosis. Versican expression in proximal tubular cells leads to the proliferation of interstitial fibroblasts through the C3a and suPAR pathways. Vitamin D attenuates the local expression of podocyte uPAR and decreases elevated circulating suPAR levels caused by systemic inflammation. This decrease preserves the function and structure of the glomerular barrier, thereby maintaining renal function. The attenuated hyperinflammatory state reduces complement activation, resulting in lower serum C3a levels. Vitamin D can also protect against COVID-19 by modulating innate and adaptive immunity, increasing ACE2 expression, and inhibiting the renin–angiotensin–aldosterone system. We hypothesized that by reducing suPAR levels, appropriate vitamin D supplementation could prevent the progression and reduce the severity of AKI in COVID-19 patients, although the data available require further elucidation.
Coumarin was first discovered in Tonka bean and then widely in other plants. Coumarin has an anticoagulant effect, and its derivative, warfarin, is a vitamin K analogue that inhibits the synthesis of clotting factors and is more widely used in the clinical treatment of endovascular embolism. At present, many artificial chemical synthesis methods can be used to modify the structure of coumarin to develop many effective drugs with low toxicity. In this study, we investigated the effects of six coumarin derivatives on the platelet aggregation induced by adenosine diphosphate (ADP). We found that the six coumarin derivatives inhibited the active form of GPIIb/IIIa on platelets and hence inhibit platelet aggregation. We found that 7-hydroxy-3-phenyl 4H-chromen-4-one (7-hydroxyflavone) had the most severe effect. In addition, we further analyzed the downstream signal transduction of the ADP receptor, including the release of calcium ions and the regulation of cAMP, which were inhibited by the six coumarin derivatives selected in this study. These results suggest that coumarin derivatives inhibit coagulation by inhibiting the synthesis of coagulation factors and they may also inhibit platelet aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.