Decision-making, when humans and other animals choose between two options, is not always based on the absolute values of the options but can also depend on their relative values. The present study examines whether decision-making by cuttlefish is dependent on relative values learned from previous experience. Cuttlefish preferred a larger quantity when making a choice between one or two shrimps (1 versus 2) during a two-alternative forced choice. However, after cuttlefish were primed under conditions where they were given a small reward for choosing one shrimp in a no shrimp versus one shrimp test (0 versus 1) six times in a row, they chose one shrimp significantly more frequently in the 1 versus 2 test. This reversed preference for a smaller quantity was not due to satiation at the time of decision-making, as cuttlefish fed a small shrimp six times without any choice test prior to the experiment still preferred two shrimps significantly more often in a subsequent 1 versus 2 test. This suggests that the preference of one shrimp in the quantity comparison test occurs via a process of learned valuation. Foraging preference in cuttlefish thus depends on the relative value of previous prey choices.
Nociception is the neural process of encoding noxious stimuli and is typically accompanied by a reflex withdrawal response away from the potentially injurious stimulus. Studies on nociception in cephalopods have so far focused on octopus and squid, with no investigations to our knowledge on cuttlefish. Yet, these are an important species both in scientific and commercial use. Therefore, the present study demonstrated that a standard pain stimulus, acetic acid, induced grooming behaviour directed towards the injection site in cuttlefish and that the injection of lidocaine reduces grooming behaviours in acetic-acid-injected cuttlefish. Wound-directed behaviour demonstrates that the animal is aware of the damage; thus, when subjecting these animals to any painful treatments in the laboratory, researchers should consider alleviating pain by the administration of pain-relieving drugs.
Synaptic modification in postnatal development is essential for the maturation of neural networks. Developmental maturation of excitatory synapses occurs at the loci of dendritic spines that are dynamically regulated by growth and pruning. Striatal spiny projection neurons (SPNs) receive excitatory input from the cerebral cortex and thalamus. SPNs of the striatonigral direct pathway (dSPNs) and SPNs of the striatopallidal indirect pathway (iSPNs) have different developmental roots and functions. The spatial and temporal dynamics of dendritic spine maturation of these two types of SPNs remain elusive. Here, we delineate the developmental trajectories of dendritic spines of dSPNs and iSPNs in the caudoputamen and nucleus accumbens (NAc). We labeled dendritic spines of SPNs by microinjecting Cre-dependent AAV-eYFP viruses into newborn Drd1-Cre or Adora2a-Cre mice, and analyzed spinogenesis at three levels, including different SPN cell types, subregions and postnatal times. In the dorsolateral striatum, spine pruning of dSPNs and iSPNs occurred at postnatal day (P)30–P50. In the dorsomedial striatum, the spine density of both dSPNs and iSPNs reached its peak between P30 and P50, and spine pruning occurred after P30 and P50, respectively, for dSPNs and iSPNs. In the NAc shell, spines of dSPNs and iSPNs were pruned after P21–P30, but no significant pruning was observed in iSPNs of lateral NAc shell. In the NAc core, the spine density of dSPNs and iSPNs reached its peak at P21 and P30, respectively, and subsequently declined. Collectively, the developmental maturation of dendritic spines in dSPNs and iSPNs follows distinct spatiotemporal trajectories in the dorsal and ventral striatum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.