HumTouch is a touch sensing technology utilizing the environmental electromagnetic wave. The method can be realized using conductive and semi-conductive materials by simply attaching electrodes to the object’s surface. In this study, we compared three methods for localizing a touch on 20×16cm2 and 40×36cm2 papers, on which four or eight electrodes were attached to record the voltages leaked from the human fingertip. The number and positions of the electrodes and the data processing of the voltages differed according to the localization methods. By constructing a kernel regression analysis model between the electrode outputs and the actual physical locations, the touched locations were estimated. Each of the three methods was tested via leave-one-out cross validation. Out of the three methods discussed, two exhibited superior performances in terms of the estimation errors. Of these two methods, one simply uses the voltages recorded by the four electrodes attached on the middle of paper edges as inputs to the regression system. The other uses differential outputs of electrode pairs as the inputs. The smallest mean location errors were 0.31 cm on 20×16cm2 paper and 0.27 cm on 40×36cm2 paper, which are smaller than the size of a fingertip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.