The dependence of the reaction initiation mechanism of pentaerythritol tetranitrate (PETN) on shock orientation and shock strength is investigated with molecular dynamics simulations using a reactive force field and the multiscale shock technique. In the simulations, a single crystal of PETN is shocked along the [110], [001], and [100] orientations with shock velocities in the range 3-10 km/s. Reactions occur with shock velocities of 6 km/s or stronger, and reactions initiate through the dissociation of nitro and nitrate groups from the PETN molecules. The most sensitive orientation is [110], while [100] is the most insensitive. For the [001] orientation, PETN decomposition via nitro group dissociation is the dominant reaction initiation mechanism, while for the [110] and [100] orientations the decomposition is via mixed nitro and nitrate group dissociation. For shock along the [001] orientation, we find that CO-NO(2) bonds initially acquire more kinetic energy, facilitating nitro dissociation. For the other two orientations, C-ONO(2) bonds acquire more kinetic energy, facilitating nitrate group dissociation.
Abstract. We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N2 and H2O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.
The aim of this study is to investigate the formation and ejection behavior of droplets created by a squeeze mode piezoelectric inkjet printing device using a single pulse voltage pattern. The test liquids are de-ionized (DI) water and ethylene glycol. The experimental results and acoustic wave theory are used to discuss the effects of operating frequency, positive voltage keeping time and pulse voltage magnitude on the volume and velocity of the droplets. For this study, a squeeze mode piezoelectric printhead is employed. By coordinating an LED flash with droplet ejection, a CCD camera could be used to capture images of the droplets at different points in the formation and ejection process. These images were then used to estimate the volume and velocity of the droplets. The experimental results are consistent with the propagation theory of acoustic waves. The maximum allowable pulse frequency in DI water and ethylene glycol are 1500 Hz and 14000 Hz respectively. If the positive voltage keeping time equals the time required for the acoustic wave to propagate through the printhead, optimal ejection behavior is achieved. As the pulse voltage increases, both the velocity and volume of the droplet become larger.
Reactive molecular dynamics simulations are computationally demanding. Reaching spatial and temporal scales where interesting scientific phenomena can be observed requires efficient and scalable implementations on modern hardware. In this paper, we focus on optimizing the performance of the widely used LAMMPS/ReaxC package for multi-core architectures. As hybrid parallelism allows better leverage of the increasing on-node parallelism, we adopt thread parallelism in the construction of bonded and nonbonded lists, and in the computation of complex ReaxFF interactions. To mitigate the I/O overheads due to large volumes of trajectory data produced and to save users the burden of post-processing, we also develop a novel in-situ tool for molecular species analysis. We analyze the performance of the resulting ReaxC-OMP package on Mira, an IBM Blue Gene/Q supercomputer. For PETN systems of sizes ranging from 32 thousand to 16.6 million particles, we observe speedups in the range of 1.5-4.5×. We observe sustained performance improvements for up to 262,144 cores (1,048,576 processes) of Mira and a weak scaling efficiency of 91.5% in large simulations containing 16.6 million particles. The in-situ molecular species analysis tool incurs only insignificant overheads across various system sizes and run configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.