Series of partially fluorinated sulfonated poly(arylene ether)s were synthesized through nucleophilic substitution polycondensation from three types of diols and superhydrophobic tetra-trifluoromethyl-substituted difluoro monomers with postsulfonation to obtain densely sulfonated ionomers. The membranes had similar ion exchange capacities of 2.92 ± 0.20 mmol g−1 and favorable mechanical properties (Young’s moduli of 1.60–1.83 GPa). The membranes exhibited considerable dimensional stability (43.1–122.3% change in area and 42.1–61.5% change in thickness at 80 °C) and oxidative stability (~55.5%). The proton conductivity of the membranes, higher (174.3–301.8 mS cm−1) than that of Nafion 211 (123.8 mS cm−1), was the percent conducting volume corresponding to the water uptake. The membranes were observed to comprise isolated to tailed ionic clusters of size 15–45 nm and 3–8 nm, respectively, in transmission electron microscopy images. A fuel cell containing one such material exhibited high single-cell performance—a maximum power density of 1.32 W cm2 and current density of >1600 mA cm−2 at 0.6 V. The results indicate that the material is a candidate for proton exchange membranes in fuel cell applications.
In this study, a series of high molecular weight ionomers of hexaarylbenzene-- and fluorene-based poly(arylene ether)s were synthesized conveniently through condensation and post-sulfonation modification. The use a of blending method might increase the stacking density of chains and affect the formation both of interchain and intrachain proton transfer clusters. Multiscale phase separation caused by the dissolution and compatibility differences of blend ionomer in high-boiling-point solvents was examined through analysis and simulations. The blend membranes produced in this study exhibited a high proton conductivity of 206.4 mS cm−1 at 80 °C (increased from 182.6 mS cm−1 for precursor membranes), excellent thermal resistance (decomposition temperature >200 °C), and suitable mechanical properties with a tensile strength of 73.8–77.4 MPa. As a proton exchange membrane for fuel cell applications, it exhibits an excellent power efficiency of approximately 1.3 W cm−2. Thus, the ionomer membranes have strong potential for use in proton exchange membrane fuel cells and other electrochemical applications.
Three functional materials were coated on tilted fiber Bragg grating (TFBG) sensors, and through the analysis of the characteristics of TBFG sensors’ amplitudes in the core and cladding modes, their abilities to sense humidity were compared. The mechanisms by which physical moisture absorption sensing was achieved through the three materials were investigated. The degree of sensitivity in terms of resonance wavelength in the cladding mode for the three coating materials was PAHP4 > PEDOT:PSS > GO. The sensitivity in the cladding modes of the tested sensor showed that the best resonance wavelength was as high as 0.0112 nm/% RH and was achieved for the TFBG coated with PAHP4 due to the hydrophilic groups around the material, which are good at forming hydrogen bond interactions with H2O.
Conjugated polymers with discrete units have received attention for their potential applications in molecular electronics and photonics. This study, a series of fluorinated carbazole derivatives of a discrete conjugated main chain, which integrated anthracene and pyrene groups, was reported. Three polymers, namely PCzAn, PCzBAn, and PCzPy, were designed and synthesized through Suzuki and poly coupling reactions, and the conjugation of the geometry of these materials was investigated. These molecules were characterized using 1 H nuclear magnetic resonance, Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC)-mass spectrometry, PL spectrum, absorption spectrum, PLQY, and solution-processed for OLEDs. All materials showed remarkable thermal stability and excellent quantum efficiency. In the emitting layer, the blending of PCzBAn:PVK (8:2) exhibited excellent luminance efficiency and external quantum efficiency of 4.87 cd/A and 2.89%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.