ObjectiveWe used dynamic single-photon emission computed tomography (D-SPECT) to overcome the interference of the planar dynamic imaging due to the overlap of internal organs, thus more accurate physiological function can be obtained. Methods 3D printed gastric phantom was used to simulate gastric emptying (GE). First, the planar dynamic liquid GE procedure was used and served as the reference value; second, D-SPECT followed by repeated liquid GE procedures with three gamma cameras were used. The emptying flow rate of the gastric phantom simulated three flow rates of liquid, semisolid and solid. Third, we simulated the intestinal activity that interfered with the residual value obtained by 2D dynamic imaging, which was compared with D-SPECT. Then, we brought the 3D VOI data into the postprocessing program to obtain the residual activity curve and residual percentage. ResultsThe residual amount obtained in the phantom at 60th minutes in the first stage is 14.57%; the residual amount of liquid emptying are Siemens: 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.